
Package: lagged (via r-universe)
August 24, 2024

Type Package

Title Classes and Methods for Lagged Objects

Version 0.3.1.9000

Date 2022-04-04

Maintainer Georgi N. Boshnakov <georgi.boshnakov@manchester.ac.uk>

Description Provides classes and methods for objects, whose indexing
naturally starts from zero. Subsetting, indexing and
mathematical operations are defined naturally between lagged
objects and lagged and base R objects. Recycling is not used,
except for singletons. The single bracket operator doesn't drop
dimensions by default.

URL https://github.com/GeoBosh/lagged

https://geobosh.github.io/lagged/

BugReports https://github.com/GeoBosh/lagged/issues

Imports methods

Suggests testthat

License GPL (>= 2)

LazyLoad yes

Collate lagged.R utils.R pc20slMatrix.r acfutils.R

RoxygenNote 6.1.1

Repository https://geobosh.r-universe.dev

RemoteUrl https://github.com/geobosh/lagged

RemoteRef HEAD

RemoteSha 2697b9e5faf7fcf88f5b18da94c34de248a54be7

Contents
acf2Lagged . 2
dataWithLagNames . 3

1

https://github.com/GeoBosh/lagged
https://geobosh.github.io/lagged/
https://github.com/GeoBosh/lagged/issues

2 acf2Lagged

FlexibleLagged-class . 4
Lagged . 6
Lagged-class . 9
Lagged1d-class . 10
Lagged2d-class . 11
Lagged3d-class . 12
maxLag . 13
maxLag<- . 15
nSeasons . 16
sl2acfbase . 17
slMatrix . 18
slMatrix-class . 20
[-methods . 21
[<–methods . 22
[[-methods . 23
[[<–methods . 24

Index 25

acf2Lagged Convert "acf" objects to "Lagged" objects

Description

Convert "acf" objects to "Lagged" objects.

Usage

acf2Lagged(x)

Arguments

x an object from "S3" class "acf", typically obtained from acf() and related func-
tions.

Details

acf2Lagged() converts objects produced by acf() and friends to suitable "Lagged" objects.

Partial autocorrelations obtained from acf() do not contain value for lag zero. acf2Lagged() puts
the number 1 at lag zero in the univariate case and a matrix of NA’s in the multivariate case.

Value

an object from class "Lagged1d" (univariate case) or "Lagged3d" (multivariate case)

Author(s)

Georgi N. Boshnakov

dataWithLagNames 3

Examples

using examples from help(acf)
lh_acf <- acf2Lagged(acf(lh))

lh_acf[0:5]
acf(lh, plot = FALSE)$acf[1 + 0:5] # same

acf(ts.union(mdeaths, fdeaths))$acf[15,,]

deaths_mts <- ts.union(mdeaths, fdeaths)
deaths_acf <- acf2Lagged(acf(deaths_mts))
base_acf <- acf(deaths_mts)

rho_14
deaths_acf[14]
base_acf$acf[1 + 14, ,] # same
this is different and maybe surprising to some:
base_acf[14]
(see also examples in \link{Lagged})

dataWithLagNames Lagged data with named lag dimension

Description

Get the data from a Lagged object and ensure that the lag dimension is named

Usage

dataWithLagNames(object, prefix = "Lag_")

Arguments

object an object inheriting from "Lagged".

prefix a character string.

Details

dataWithLagNames() extracts the data part from a lagged object and gives names to the lag dimen-
sion, if it is not already named.

This function is mainly used for programming, particularly in show() methods for lagged objects..

Value

The data part with names as described in Details.

Author(s)

Georgi N. Boshnakov

4 FlexibleLagged-class

Examples

x <- Lagged(drop(acf(ldeaths, plot = FALSE)$acf))
there are no names for the lags:
names(x) # NULL
but the print method inserts default "Lag_N" names
x
This sets the names to their defaults:
x1 <- dataWithLagNames(x)
names(x1)
... and this sets non-default prefix:
x2 <- dataWithLagNames(x, "L")
names(x2)
x2

FlexibleLagged-class Class FlexibleLagged

Description

Class FlexibleLagged.

Objects from the Class

Objects can be created by calls of the form new("FlexibleLagged", data, ...), see also conve-
nience function Lagged,

"FlexibleLagged" is used mainly in programming as a superclass of classes which need to inherit
from all "Lagged" classes. It can represent objects from any subclass of "Lagged". Methods are
defined, such that the internal representation is transparent.

Slots

data: Object of class "Lagged" ~~

Extends

Class "Lagged", directly.

Methods

[signature(x = "FlexibleLagged", i = "ANY"): ...

[signature(x = "FlexibleLagged", i = "missing"): ...

[<- signature(x = "FlexibleLagged", i = "missing"): ...

[<- signature(x = "FlexibleLagged", i = "numeric"): ...

Author(s)

Georgi N. Boshnakov

FlexibleLagged-class 5

See Also

Lagged, Lagged1d, Lagged2d, Lagged3d

Examples

Lagged1d
v <- 1:12
v_lagged <- Lagged(v)
v_lagged
identical(v_lagged, new("Lagged1d", data = v)) # TRUE
v_lagged[0:2] # v[1:3]
v_lagged[[0]] # 1

Lagged2d
m <- matrix(1:12, nrow = 4)
m_lagged <- Lagged(m)
m_lagged
identical(m_lagged, new("Lagged2d", data = m)) # TRUE
m_lagged[0] # matrix with 1 column
m_lagged[[0]] # numeric

Lagged3d
a <- array(1:24, dim = c(2, 3, 4))
a_lagged <- Lagged(a)
identical(a_lagged, new("Lagged3d", data = a)) # TRUE

dim(a_lagged[0]) # c(2,3,1)
a_lagged[0]
a[, , 1, drop = FALSE]

dim(a_lagged[[0]]) # c(2,3)
a_lagged[[0]]
a[, , 1, drop = TRUE]

as above "FlexibleLagged"
1d
v_flex <- new("FlexibleLagged", data = v)
identical(v_flex@data, v_lagged) # TRUE
v_flex[0] # = v_lagged[0]
v_flex[[0]] # = v_lagged[[0]]

2d
m_flex <- new("FlexibleLagged", data = m)
identical(m_flex@data, m_lagged) # TRUE
m_flex[0] # = m_lagged[0]
m_flex[[0]] # = m_lagged[[0]]

3d
a_flex <- new("FlexibleLagged", data = a)
identical(a_flex@data, a_lagged) # TRUE
a_flex[0] # = a_lagged[0]
a_flex[[0]] # = a_lagged[[0]]

6 Lagged

Lagged Create Lagged objects

Description

Create objects inheriting from Lagged.

Usage

Lagged(data, ...)

Arguments

data suitable data, see Details.

... further arguments passed on to new().

Details

Lagged creates an object inheriting from "Lagged". The exact class depends on argument data.
This is the easiest way to create lagged objects.

If data is a vector, matrix or 3D array, the result is "Lagged1d", "Lagged2d" and "Lagged3d",
respectively. If data inherits from "Lagged", the result is "FlexibleLagged".

Value

a suitable "Lagged" object, as described in Details

Note

I am considering making Lagged generic.

Author(s)

Georgi N. Boshnakov

See Also

the specific classes Lagged1d, Lagged2d, Lagged3d

Examples

a discrete distribution with outcomes 0,1,2,3,4,5,6:
v <- dbinom(0:6, size = 6, p = 0.5)
bin6 <- Lagged(v)

names are used, if present:
names(v) <- paste0("P(x=", 0:6, ")")
bin6a <- Lagged(v)

Lagged 7

bin6a
subsetting drops the laggedness:
bin6a[1:3]
bin6a[]
bin6a[0:2]
to resize (shrink or extend) the object use 'maxLag<-':
s8 <- s2 <- bin6a
maxLag(s2) <- 2
s2
extending inserts NA's:
maxLag(s8) <- 8
s8
use assignment to extend with specific values:
s8a <- bin6a
s8a[7:8] <- c("P(x=7)" = 0, "P(x=8)" = 0)
s8a

adapted from examples for acf()
acf of univariate ts
acv1 <- acf(ldeaths, plot = FALSE)
class(acv1) # "acf"
a1 <- drop(acv1$acf)
class(a1) # numeric

la1 <- Lagged(a1) # 1d lagged object from 'numeric':
Lagged(acv1) # 1d lagged object from 'acf':

acf of multivariate ts
acv2 <- acf(ts.union(mdeaths, fdeaths), plot = FALSE)
class(acv2) # "acf"
a2 <- acv2$acf
class(a2) # 3d array
dim(a2)

la2a <- acf2Lagged(acv2) # explicitly convert 'acf' to lagged object
Lagged(acv2) # equivalently, just use Lagged()
identical(la2a, Lagged(acv2)) # TRUE

la2a[0] # R_0, indexing lagged object
a2[1, ,] # same, indexing array data from 'cf' object
acv2[0] # same, indexing 'acf' object

la2a[1] # R_1
a2[2, ,] # same
acv2[1/12] # transposed, see end of this example section as to why use 1/12

la2a[2] # R_1
a2[3, ,] # same
acv2[2/12] # transposed, see end of this example section as to why use 1/12

multiple lags
la2a[0:1] # native indexing with lagged object
a2[1:2, ,] # different ordering

8 Lagged

acv2$acf[1:2, ,] # also different ordering

'[' doesn't drop a dimension even when it is of length 1:
la2a[0]
la2a[1]

to get a singleton element, use '[[':
la2a[[0]]
la2a[[1]]

arithmetic and math operators
-la1
+la1

2*la1
la1^2
la1 + la1^2

abs(la1)
sinpi(la1)
sqrt(abs(la1))

Summary group
max(la1)
min(la1)
range(la1)
prod(la1)
sum(la1)
any(la1 < 0)
all(la1 >= 0)

Math2 group
round(la1)
round(la1, 2)
signif(la1)
signif(la1, 4)

The remaining examples below are only relevant
for users comparing to indexing of 'acf'
##
indexing in base R acf() is somewhat misterious, so an example with
DIY computation of lag_1 autocovariance matrix
n <- length(mdeaths)
tmpcov <- sum((mdeaths - mean(mdeaths)) * (fdeaths - mean(fdeaths))) / n
msd <- sqrt(sum((mdeaths - mean(mdeaths))^2)/n)
fsd <- sqrt(sum((fdeaths - mean(fdeaths))^2)/n)
tmpcov1 <- sum((mdeaths - mean(mdeaths))[2:n] *

(fdeaths - mean(fdeaths))[1:(n-1)]) / n
tmpcov1 / (msd * fsd)

la2a[[1]][1,2] - tmpcov1 / (msd * fsd) # only numerically different
the raw acf in the 'acf' object is not surprising:
la2a[[1]][1,2] == acv2$acf[2, 1, 2] # TRUE

Lagged-class 9

... but this probably is:
acv2[1]
the ts here is monthly but has unit of lag 'year'
so acv2[1] asks for lag 1 year = 12 months, thus
acv2[1/12]
all(acv2$acf[13, ,] == drop(acv2[1]$acf)) # TRUE
all(acv2$acf[2, ,] == drop(acv2[1/12]$acf)) # TRUE
all(la2a[[1]] == drop(acv2[1/12]$acf)) # TRUE

Lagged-class Class Lagged

Description

Class Lagged.

Objects from the Class

This class serves as a base class for objects with natural indexing starting from zero. It is a virtual
class, no objects can be created from it.

Arithmetic and other operations are defined. They return objects strictly from the core "Lagged"
classes, even if the arguments are from classes inheriting from the core "Lagged" classes. Of course,
for such classes specialised methods can be defined to keep the class when appropriate. For exam-
ple, the sum of two autocovariance functions is an autocovariance function, but their difference may
not be a valid one.

In arithmetic operations between "Lagged" objects the arguments are made of equal length by filling
in NA’s. When one of the operands is not "Lagged", the recycling rule is applied only if that
argument is a singleton.

Slots

data: Object of class "ANY". Subclasses of "Lagged" may restrict the class of this slot.

Methods

[signature(x = "Lagged", i = "missing", j = "ANY", drop = "ANY"): In this case (i.e., i is
missing) [], returns the underlying data. This is equivalent to using x[1:maxLag(x)].

maxLag signature(object = "Lagged"): Gives the maximal lag in the object.

[[signature(x = "Lagged", i = "numeric"): ...

[[<- signature(x = "Lagged", i = "numeric"): ...

[<- signature(x = "Lagged", i = "missing"): ...

coerce signature(from = "Lagged", to = "array"): ...

coerce signature(from = "Lagged", to = "matrix"): ...

10 Lagged1d-class

coerce signature(from = "Lagged", to = "vector"): ...

Math signature(x = "Lagged"): ...

Math2 signature(x = "Lagged"): ...

maxLag<- signature(object = "Lagged"): ...

Ops signature(e1 = "FlexibleLagged", e2 = "Lagged"): ...

Ops signature(e1 = "Lagged", e2 = "FlexibleLagged"): ...

Ops signature(e1 = "Lagged", e2 = "Lagged"): ...

Ops signature(e1 = "Lagged", e2 = "missing"): ...

Ops signature(e1 = "Lagged", e2 = "vector"): ...

Ops signature(e1 = "vector", e2 = "Lagged"): ...

Summary signature(x = "Lagged"): ...

Author(s)

Georgi N. Boshnakov

See Also

function Lagged which creates objects from suitable subclasses of "Lagged", and also Lagged1d,
Lagged2d, Lagged3d

Examples

Lagged(1:12) # => Lagged1d
Lagged(matrix(1:12, ncol = 3)) # => Lagged2d
Lagged(array(1:24, dim = 2:4)) # => Lagged3d

equivalently:
new("Lagged1d", data = 1:12) # => Lagged1d
new("Lagged2d", data = matrix(1:12, ncol = 3)) # => Lagged2d
new("Lagged3d", data = array(1:24, dim = 2:4)) # => Lagged3d

Lagged1d-class Class Lagged1d

Description

Class Lagged1d.

Objects from the Class

Objects can be created by calls of the form Lagged(v) or new("Lagged1d", data = v), where v is
a vector. new("Lagged1d", ...) also works.

Lagged2d-class 11

Slots

data: Object of class "vector".

Extends

Class "Lagged", directly.

Methods

[<- signature(x = "Lagged1d", i = "numeric"): ...

[signature(x = "Lagged1d", i = "numeric", j = "ANY", drop = "ANY"): ...

show signature(object = "Lagged1d"): ...

whichLagged signature(x = "Lagged1d", y = "missing"): ...

Author(s)

Georgi N. Boshnakov

See Also

Lagged, Lagged2d, Lagged3d

Examples

v <- cos(2*pi*(0:10)/10)
new("Lagged1d", data = v) ## ok, but Lagged() is more convenient
x <- Lagged(v)
class(x) # Lagged1d
x
x[0]
x[0:3]

Lagged2d-class Class Lagged2d

Description

Class Lagged2d.

Objects from the Class

Objects can be created by calls of the form Lagged(m) or new("Lagged2d", data = m), where m is
a matrix. new("Lagged2d", ...) also works.

Slots

data: Object of class "matrix" ~~

12 Lagged3d-class

Extends

Class "Lagged", directly.

Methods

[signature(x = "Lagged2d", i = "numeric", j = "missing", drop = "logical"): ...

[signature(x = "Lagged2d", i = "numeric", j = "missing", drop = "missing"): ...

[<- signature(x = "Lagged2d", i = "numeric"): ...

show signature(object = "Lagged2d"): ...

whichLagged signature(x = "Lagged2d", y = "missing"): ...

Author(s)

Georgi N. Boshnakov

See Also

Lagged, Lagged1d, Lagged3d

Examples

powers <- Lagged(outer(1:6, 0:6, `^`))
powers[[0]]
powers[[1]]
powers[[2]]

Lagged3d-class Class Lagged3d

Description

Class Lagged3d.

Objects from the Class

Objects can be created by calls of the form Lagged(a) or new("Lagged3d", data = a), where a is
a 3-d array. new("Lagged3d", ...) also works.

Slots

data: Object of class "array" ~~

Extends

Class "Lagged", directly.

maxLag 13

Methods

[signature(x = "Lagged3d", i = "numeric", j = "missing", drop = "logical"): ...

[signature(x = "Lagged3d", i = "numeric", j = "missing", drop = "missing"): ...

[<- signature(x = "Lagged3d", i = "numeric"): ...

show signature(object = "Lagged3d"): ...

whichLagged signature(x = "Lagged3d", y = "missing"): ...

Author(s)

Georgi N. Boshnakov

See Also

Lagged, Lagged1d, Lagged2d

Examples

see examples for class "Lagged"

maxLag Give the maximal lag in an object

Description

Give the maximal lag in an object, such as autocorrelations.

Usage

maxLag(object, ...)

Arguments

object an object, for which the function makes sense.

... not used?

Details

maxLag is a generic function to get the maximal lag for which information is available in lagged
objects.

Value

a non-negative integer

14 maxLag

Methods

signature(object = "Lagged") This method applies to all classes inheriting from "Lagged".

signature(object = "array")

signature(object = "matrix")

signature(object = "vector")

signature(object = "ANY")

signature(object = "slMatrix")

Author(s)

Georgi N. Boshnakov

See Also

"maxLag<-"

Examples

1d
v <- Lagged(2^(0:6))
v
maxLag(v)
v[c(2,4,6)]
v[8] # NA
reduce the number of lags in place
maxLag(v) <- 4
v
extend the object (with NA's)
maxLag(v) <- 6
v
extend using "["
v[5:8] <- 2^(5:8)
v

2d
m <- Lagged(matrix(1:12, nrow = 4))
m
maxLag(m)
maxLag(m) <- 1
m
maxLag(m) <- 4 # extending this way doesn't work currently

maxLag<- 15

maxLag<- Change the maximal lag in a lagged object

Description

Change the maximal lag in a lagged object.

Usage

maxLag(object, ...) <- value

Arguments

object an object for which this makes sense.

... currently not used.

value the new value of the maximal lag, a non-negative integer number.

Details

The replacement version of maxLag() changes the maximal lag in an object to value. It is a generic
function with no default method.

For the core Lagged classes this is done by simply extending or shrinking the data part to the
requested value. Subclasses of "Lagged" and other classes, in general, may need more elaborate
changes. If so, they should define their own methods.

When value is larger than the current maxLag(object), the entries for the new lags are filled with
NA’s.

Value

the object whose maximal lag is modified as described in Details.

Methods

signature(object = "Lagged")

signature(object = "FlexibleLagged")

Author(s)

Georgi N. Boshnakov

See Also

maxLag

16 nSeasons

Examples

la1 <- Lagged(drop(acf(ldeaths)$acf))
la3 <- la1
la3
shrink la3
maxLag(la3) # 18
maxLag(la3) <- 5
la3
maxLag(la3) # 5

extend la3, new entries are filled with NA's
maxLag(la3) <- 10
la3

alternatively, use "[<-" which accepts any replacement values
la3[11:13] <- 0
la3

nSeasons Get the number of seasons from an object

Description

Get the number of seasons from an object.

Usage

nSeasons(object)
nSeasons(object, ...) <- value

Arguments

object an object for which the notion of number of seasons makes sense.

value a positive integer number.

... further arguments for methods.

Details

These are generic functions.

Methods for nSeasons are straightforward when the property makes sense for objects from a class.
In contrast, methods for the replacement version, `nSeasons<-`, should be defined carefully and
may not even be feasible.

Value

an integer number

sl2acfbase 17

Methods

No methods for `nSeasons<-` are defined in package lagged. The methods defined for nSeasons
are given below.

signature(object = "slMatrix")

Author(s)

Georgi N. Boshnakov

Examples

m <- slMatrix(matrix(1:12, nrow = 4))
m
nSeasons(m)

sl2acfbase Convert between vector and season-lag representations

Description

Convert between vector and season-lag representations of autocovariances of multivariate and peri-
odically correlated time series.

Usage

sl2acfbase(mat, maxlag, fullblocks = FALSE)

acfbase2sl(acf)

sl2vecacf(mat, maxlag, fullblocks = FALSE)

Arguments

acf an acf as returned by base R acf.

mat a matrix containing autocovariances in season-lag arrangement.

maxlag maximal lag, a positive integer.

fullblocks if TRUE, keep full blocks only.

Details

These functions rearrange autocovariances and autocorrelations between the native season-lag ar-
rangement in package “pcts” and the vector representations of the corresponding mutivariate models
(vector of seasons representation of periodic models). Variable s is taken be season s and vice versa
in the opposite direction.

“acfbase” in the names of the functions refers to the representation returned by base function acf.

18 slMatrix

acfbase2sl rearranges a multivariate acf in season-lag form.

sl2acfbase rearranges a season-lag form into the multivariate form used by base function acf.

sl2vecacf is similar to sl2acfbase but the result is such that the lag is in the third dimension and
r[, , k] is Cov(Xt, Xt−k) (not its transpose). See also the examples below and in acf2Lagged.

Value

for acfbase2sl, a matrix.

for sl2acfbase and sl2vecacf, an array.

Author(s)

Georgi N. Boshnakov

Examples

use a character matrix to illustrate the positions of the elements
matsl <- rbind(paste0("Ra", 0:3), paste0("Rb", 0:3))
matsl
convert to what I consider "standard" vec format R(k)=EX_tX_{t-k}'
sl2vecacf(matsl)
convert to the format from acf() (R(k) is the transposed from mine).
sl2acfbase(matsl)
identical(sl2vecacf(matsl), aperm(sl2acfbase(matsl), c(3, 2, 1))) # TRUE

by default the conversion is lossles;
so this contains all values from the original and some NA's:
sl2acfbase(matsl)
the orignal, matsl, can be restored:
acfbase2sl(sl2acfbase(matsl))
identical(acfbase2sl(sl2acfbase(matsl)), matsl) # TRUE

this drops some values (if necessary) to keep complete block only
sl2acfbase(matsl, fullblocks = TRUE)

slMatrix Function to create objects from class slMatrix

Description

Provides a flexible way to create objects from class slMatrix. The entries may be specified in
several ways.

Usage

slMatrix(init = NA, period, maxlag, seasonnames = seq(length = period),
lagnames = as.character(0:maxlag), periodunit = "season",
lagunit = "lag", f = NA, type = "sl")

slMatrix 19

Arguments

init values for the the autocovariances, see also argument f.

period the number of seasons in an epoch

maxlag maximum lag to be stored

seasonnames names of seasons (?)

lagnames names of lags

periodunit name of the period unit

lagunit name of the unit for lags

f function to evaluate or matrix to get the values of the autocovariances.

type format or the arguments of f, see details.

Details

The internal representation of slMatrix is a matrix slot, m, of size period x (maxlag+1). It is
created by a call to matrix() with init supplying the values (may be NAs). If init is a matrix
values for period and maxlag are deduced (if not supplied) from its size.

Change on 21/06/2006: Now, if the length of init is smaller than that of m, the remaining values
are filled with NA’s (in the past the normal recycling rules of matrix() applied). The previous
behaviour used to hide puzzling and difficult to track errors. I cannot be sure but this change should
not affect old code.

If f is given it is used to populate the slot m by a call to fill.slMatrix. Normally in this case
init=NA but this is not required.

Currently fill.slMatrix has methods for f of class "matrix" and "function". The arguments (or
the indices) can be controlled by the argument type.

type="sl" - standard season-lag pair

type="tt" - time-time pair

type="tl" - standard season-lag pair

Value

An object of class slMatrix

Note

To do: additional work is needed on the case when the dimensions of init and the result are not the
same (see the details section)

Author(s)

Georgi N. Boshnakov

See Also

slMatrix-class, fill.slMatrix

20 slMatrix-class

slMatrix-class Class "slMatrix"

Description

slMatrix is a matrix-like object for storing values of periodic autocovariance functions, i.e. of
functions of two arguments which are periodic in the first argument, r[t,k]=r[t+d,k]. The first
argument has the meaning of "time" or "season" (when taken modulo the period), the second is
"lag". This class provides various access and assignment methods for such objects. slMatrix was
created as the storage for values of periodic autocovariance functions and is used for other related
quantities.

Objects from the Class

Objects can be created by calls of the form new("slMatrix", m), where m is a matrix with m[i,k]
giving the values for season i and lag (k-1), k = 1, 2, The number of rows in m is taken to be
the number of seasons. The function slMatrix provides several ways to specify the data for the
slMatrix object.

Slots

m: Object of class "matrix".

Methods

[<- signature(x = "slMatrix", i = "ANY", j = "ANY",value = "ANY"): ...

[signature(x = "slMatrix", i = "ANY", j = "ANY", drop = "ANY"):
The indexing method is quite flexible and allows to extract parts of slMatrix objects in a
variety of ways. It returns an ordinary matrix or, if drop = TRUE, vector.
The syntax for indexing is similar to that for ordinary matrices with some features specific to
the periodic nature of the first index. The named parameters are i, j, and type. Both i and j
can be vectors. The interpretation of i and j depends on type.
x[i,j] (or x[i,j,type="sl"]) refers to the value for season i and lag j. This is referred to
as standard season-lag pair, meaning that the elements of i must be in the range 1,...,d, where
d is the number of seasons and the lags must be non-negative. Negative indices have the usual
effect of removing the corresponding elements. A zero element for lag is admissible.
x[i,j,type="tl"] is similar to "sl" but i is allowed to take any (integer) values. These are
reduced modulo the number of seasons to the 1,...,d, range.
x[i,j,type="tl+-"] This allows also the lags to be negative.
x[i,j,type="co"] ("co" stands for "coefficient") This assumes that the values for negative
lags and lags larger than maxlag are 0. If assignment is attempted for such lags, a message is
issued and the assignment is ignored.
x[i,j,type="tt"] both arguments have the meaning of time. If i and j are scalars the pair
i,j is converted to standard s,l pair and the value assigned to the relevant element. If i
and/or j are vectors, they are crossed and the procedure is done for each pair.

[-methods 21

If several values need to be assigned to the same s,l pair a warning is isssued if these values
are not all equal.
Obviously, whereever negative arguments are allowed, elements to omit cannot be specified
with negative indices.
see [-methods.

maxLag signature(x = "slMatrix"): maximum lag available for storage.

Note

The current implementation of the indexing is inefficient, I simply added features and patches as
the need arose. Maybe some day I will replace it with C code.

Author(s)

Georgi N. Boshnakov

See Also

slMatrix

Examples

m1 <- rbind(c(1, 0.81, 0), c(1, 0.4972376, 0.4972376))
x <- slMatrix(m1)
x[1, 0]
x[1:2, 0:1]
x[1:3, 1:3, type = "tt"]

[-methods Methods for subsetting defined in package ’lagged’

Description

Methods for subsetting defined in package ’lagged’.

Methods

Subscripting "Lagged" objects always drops the Lagged-ness.

When i is missing, x[], returns the underlying data. This is equivalent to using x[0:maxLag(x)].

Subscripting (with one index) is defined naturally. It returns the suitably subscripted data slot (for
"FlexibleLagged" it is the data slot of the data slot). For indices larger than the maximal lag the
values are NA.

Currently negative indices work similarly to the standard R indexing in that negative indices are
used to drop elements. However, for k > 0, using −k as an index drops the element for lag k − 2,
not k (since the subsetting is done by something like x@data[i+1]). This is implementation detail,
so it may be changed and should not be relied upon.

The following methods for "[" are currently defined in package "lagged":

22 [<–methods

signature(x = "FlexibleLagged", i = "missing", j = "ANY", drop = "ANY")

signature(x = "FlexibleLagged", i = "numeric", j = "missing", drop = "logical")

signature(x = "FlexibleLagged", i = "numeric", j = "missing", drop = "missing")

signature(x = "Lagged", i = "missing", j = "ANY", drop = "ANY")

signature(x = "Lagged1d", i = "numeric", j = "ANY", drop = "ANY")

signature(x = "Lagged2d", i = "numeric", j = "missing", drop = "logical")

signature(x = "Lagged2d", i = "numeric", j = "missing", drop = "missing")

signature(x = "Lagged3d", i = "numeric", j = "missing", drop = "logical")

signature(x = "Lagged3d", i = "numeric", j = "missing", drop = "missing")

signature(x = "slMatrix", i = "ANY", j = "ANY", drop = "ANY")

signature(x = "Lagged2d", i = "ANY", j = "ANY", drop = "character")

signature(x = "Lagged2d", i = "missing", j = "numeric", drop = "missing")

signature(x = "Lagged2d", i = "numeric", j = "numeric", drop = "missing")

signature(x = "FlexibleLagged", i = "missing", j = "missing", drop = "ANY")

signature(x = "ANY", i = "ANY", j = "ANY", drop = "ANY")

signature(x = "nonStructure", i = "ANY", j = "ANY", drop = "ANY")

signature(x = "Lagged2d", i = "character", j = "missing", drop = "logical")

signature(x = "Lagged2d", i = "character", j = "missing", drop = "missing")

signature(x = "Lagged2d", i = "character", j = "character", drop = "missing")

signature(x = "Lagged2d", i = "missing", j = "character", drop = "missing")

signature(x = "Lagged2d", i = "numeric", j = "character", drop = "missing")

signature(x = "Lagged2d", i = "character", j = "numeric", drop = "missing")

[<–methods Methods for subset assignment

Description

Methods for subset assignment.

Methods

signature(x = "FlexibleLagged", i = "missing")

signature(x = "FlexibleLagged", i = "numeric")

signature(x = "Lagged1d", i = "numeric")

signature(x = "Lagged", i = "missing")

signature(x = "Lagged2d", i = "numeric")

signature(x = "Lagged3d", i = "numeric")

signature(x = "slMatrix", i = "ANY")

[[-methods 23

[[-methods Methods for ’[[’ in package ’lagged’

Description

Methods for ’[[’ in package ’lagged’.

Methods

Indexing with "[[" returns the value for the specified lag. The index should be a single number.

This is the recommended way to extract the value at a single index.

signature(x = "FlexibleLagged", i = "ANY", j = "ANY")

signature(x = "Lagged", i = "numeric", j = "missing")

signature(x = "Lagged2d", i = "numeric", j = "logical")

signature(x = "Lagged2d", i = "numeric", j = "numeric")

signature(x = "slMatrix", i = "numeric", j = "ANY")

signature(x = "Lagged2d", i = "missing", j = "numeric")

signature(x = "Lagged2d", i = "numeric", j = "missing")

signature(x = "FlexibleLagged", i = "missing", j = "numeric")

signature(x = "FlexibleLagged", i = "numeric", j = "missing")

Examples

for 1d objects the difference of '[' and '[[' is not visible
(acv1 <- acf2Lagged(acf(ldeaths, plot = FALSE)))
acv1[1]
acv1[[1]]

in higher dimenions it matters
acv2 <- acf2Lagged(acf(ts.union(mdeaths, fdeaths), plot = FALSE))
acv2[0] # array
acv2[[0]] # matrix

as in standard R conventions, '[' can select arbitrary number of elements
acv2[0:1]
... while '[[' selects only one, so this is an error:
Not run:
acv2[[0:1]]

End(Not run)

Lagged2
m <- matrix(10:49, nrow = 4, byrow = TRUE)
m_lagged <- Lagged(m)
m_lagged

24 [[<–methods

one index: lag
m_lagged[0:1]
m_lagged[0] # column vector
m_lagged[[0]] # numeric
two indices: first is row, second is lag
m_lagged[1 , 0] # '[' doesn't drop dimensions
m_lagged[1 , 0:3]

m_lagged[[1 , 0]] # '[[' does drop dimensions
m_lagged[[1 , 0:3]]
m_lagged[[1, TRUE]] # the whole first row, as numeric

m_lagged[1:2 , 0:3] # ok, a matrix
... but the first arg. of '[[' must be of length one,
so this throws error:
Not run:
m_lagged[[1:2 , 0:3]]

End(Not run)

[[<–methods Methods for ’[[<-’ in package ’lagged’

Description

Methods for ’[[<-’ in package ’lagged’.

Methods

signature(x = "Lagged", i = "numeric")

See Also

[[-methods

Index

∗ acf
sl2acfbase, 17

∗ classes
FlexibleLagged-class, 4
Lagged-class, 9
Lagged1d-class, 10
Lagged2d-class, 11
Lagged3d-class, 12
slMatrix-class, 20

∗ methods
[-methods, 21
[<–methods, 22
[[-methods, 23
[[<–methods, 24
maxLag, 13
maxLag<-, 15
nSeasons, 16

∗ programming
Lagged, 6

∗ seasonLag
slMatrix, 18

∗ ts
acf2Lagged, 2
Lagged, 6
maxLag, 13
maxLag<-, 15
nSeasons, 16

[,ANY,ANY,ANY,ANY-method ([-methods), 21
[,FlexibleLagged,missing,ANY,ANY-method

([-methods), 21
[,FlexibleLagged,missing,missing,ANY-method

([-methods), 21
[,FlexibleLagged,numeric,missing,logical-method

([-methods), 21
[,FlexibleLagged,numeric,missing,missing-method

([-methods), 21
[,Lagged,missing,ANY,ANY-method

([-methods), 21
[,Lagged1d,numeric,ANY,ANY-method

([-methods), 21
[,Lagged2d,ANY,ANY,character-method

([-methods), 21
[,Lagged2d,character,character,missing-method

([-methods), 21
[,Lagged2d,character,missing,logical-method

([-methods), 21
[,Lagged2d,character,missing,missing-method

([-methods), 21
[,Lagged2d,character,numeric,missing-method

([-methods), 21
[,Lagged2d,missing,character,missing-method

([-methods), 21
[,Lagged2d,missing,numeric,missing-method

([-methods), 21
[,Lagged2d,numeric,character,missing-method

([-methods), 21
[,Lagged2d,numeric,missing,logical-method

([-methods), 21
[,Lagged2d,numeric,missing,missing-method

([-methods), 21
[,Lagged2d,numeric,numeric,missing-method

([-methods), 21
[,Lagged3d,numeric,missing,logical-method

([-methods), 21
[,Lagged3d,numeric,missing,missing-method

([-methods), 21
[,nonStructure,ANY,ANY,ANY-method

([-methods), 21
[,slMatrix,ANY,ANY,ANY-method

([-methods), 21
[-methods, 21
[<–methods, 22
[<-,FlexibleLagged,missing-method

([<–methods), 22
[<-,FlexibleLagged,numeric-method

([<–methods), 22
[<-,Lagged,missing-method ([<–methods),

22

25

26 INDEX

[<-,Lagged1d,numeric-method
([<–methods), 22

[<-,Lagged2d,numeric-method
([<–methods), 22

[<-,Lagged3d,numeric-method
([<–methods), 22

[<-,slMatrix,ANY-method ([<–methods), 22
[[,FlexibleLagged,ANY,ANY-method

([[-methods), 23
[[,FlexibleLagged,missing,numeric-method

([[-methods), 23
[[,FlexibleLagged,numeric,missing-method

([[-methods), 23
[[,Lagged,numeric,missing-method

([[-methods), 23
[[,Lagged2d,missing,numeric-method

([[-methods), 23
[[,Lagged2d,numeric,logical-method

([[-methods), 23
[[,Lagged2d,numeric,missing-method

([[-methods), 23
[[,Lagged2d,numeric,numeric-method

([[-methods), 23
[[,slMatrix,numeric,ANY-method

([[-methods), 23
[[-methods, 23
[[<–methods, 24
[[<-,Lagged,numeric-method

([[<–methods), 24

acf2Lagged, 2, 18
acfbase2sl (sl2acfbase), 17

dataWithLagNames, 3

fill.slMatrix, 19
FlexibleLagged-class, 4

Lagged, 4, 5, 6, 10–13
Lagged-class, 9
Lagged1d, 5, 6, 10, 12, 13
Lagged1d-class, 10
Lagged2d, 5, 6, 10, 11, 13
Lagged2d-class, 11
Lagged3d, 5, 6, 10–12
Lagged3d-class, 12

maxLag, 13, 15
maxLag,ANY-method (maxLag), 13

maxLag,array-method (maxLag), 13
maxLag,Lagged-method (maxLag), 13
maxLag,matrix-method (maxLag), 13
maxLag,slMatrix-method (maxLag), 13
maxLag,vector-method (maxLag), 13
maxLag-methods (maxLag), 13
maxLag<-, 15
maxLag<-,FlexibleLagged-method

(maxLag<-), 15
maxLag<-,Lagged-method (maxLag<-), 15
maxLag<--methods (maxLag<-), 15

nSeasons, 16
nSeasons,slMatrix-method (nSeasons), 16
nSeasons-methods (nSeasons), 16
nSeasons<- (nSeasons), 16

sl2acfbase, 17
sl2vecacf (sl2acfbase), 17
slMatrix, 18, 21
slMatrix-class, 20

	acf2Lagged
	dataWithLagNames
	FlexibleLagged-class
	Lagged
	Lagged-class
	Lagged1d-class
	Lagged2d-class
	Lagged3d-class
	maxLag
	maxLag<-
	nSeasons
	sl2acfbase
	slMatrix
	slMatrix-class
	[-methods
	[<–methods
	[[-methods
	[[<–methods
	Index

