
Package: mixAR (via r-universe)
September 13, 2024

Type Package

Title Mixture Autoregressive Models

Version 0.22.7.9000

Date 2022-05-05

Maintainer Georgi N. Boshnakov <georgi.boshnakov@manchester.ac.uk>

Description Model time series using mixture autoregressive (MAR)
models. Implemented are frequentist (EM) and Bayesian methods
for estimation, prediction and model evaluation. See Wong and
Li (2002) <doi:10.1111/1467-9868.00222>, Boshnakov (2009)
<doi:10.1016/j.spl.2009.04.009>), and the extensive references
in the documentation.

License GPL (>= 2)

LazyLoad yes

Depends R (>= 3.5), methods

Imports stats, graphics, utils, stats4, BB, combinat, timeDate,
fGarch, Rdpack (>= 0.7), gbutils (>= 0.3-1), MCMCpack, e1071,
permute, mvtnorm

Suggests fma, testthat, covr

RdMacros Rdpack

URL https://geobosh.github.io/mixAR/ (website),

https://github.com/GeoBosh/mixAR/ (devel)

BugReports https://github.com/GeoBosh/mixAR/issues

Collate raggedCoef.R raggedCoefS.R mixComp.R mixAR.R mixARcalc.R
mixutil.R dist.R predict.R mix_se.R obs_info_matrix.R
samp_functions.R bayes_mixAR.R label_switch.R Choose_pk.R
marg_loglik.R mixSARfit.R mixARreg.R fit_mixARreg.R
raggedCoefV.R mixVAR.R fit_mixVAR.R cond_loglikV.R mixVAR_sim.R
tsdiag.R mixAR_diag.R devel.R em0.R emGaussian.R emgen.R
00marmath.R exmodels.R mixARsim.R

Encoding UTF-8

1

https://doi.org/10.1111/1467-9868.00222
https://doi.org/10.1016/j.spl.2009.04.009
https://geobosh.github.io/mixAR/
https://github.com/GeoBosh/mixAR/
https://github.com/GeoBosh/mixAR/issues

2 Contents

RoxygenNote 7.1.1

NeedsCompilation no

Author Georgi N. Boshnakov [aut, cre], Davide Ravagli [aut]

Repository https://geobosh.r-universe.dev

RemoteUrl https://github.com/geobosh/mixar

RemoteRef HEAD

RemoteSha 69b8c6b484c3251cde66d06236c94bf48ec52009

Contents
mixAR-package . 3
bayes_mixAR . 7
Choose_pk . 8
cond_loglik . 10
dist_norm . 11
em_est_dist . 12
em_est_sigma . 12
em_rinit . 13
est_templ . 14
exampleModels . 15
fit_mixAR-methods . 17
fit_mixARreg-methods . 19
fit_mixVAR-methods . 21
fnoise . 23
get_edist-methods . 25
inner . 25
isStable . 27
label_switch . 28
lik_params . 29
make_fcond_lik-methods . 30
marg_loglik . 31
MixAR-class . 33
mixAR-methods . 34
mixARemFixedPoint . 35
MixARGaussian-class . 37
MixARgen-class . 39
mixARnoise_sim . 41
mixAR_BIC . 42
mixAR_cond_probs . 44
mixAR_diag . 44
mixAR_sim . 47
mixAR_switch . 48
MixComp-class . 49
mixFilter . 52
mixgenMstep . 53
mixMstep . 54

mixAR-package 3

mixSARfit . 55
MixVAR-class . 56
mixVARfit . 57
MixVARGaussian-class . 58
mixVAR_sim . 59
mix_ek . 60
mix_hatk . 62
mix_moment . 62
mix_ncomp-methods . 65
mix_pdf-methods . 65
mix_qf-methods . 66
mix_se-methods . 67
multiStep_dist-methods . 69
noise_dist . 72
noise_dist-methods . 73
noise_params-methods . 73
noise_rand-methods . 74
parameters . 74
percent_of . 75
permn_cols . 77
PortfolioData1 . 78
predict_coef . 79
ragged . 80
raggedCoef-class . 81
raggedCoefS-class . 84
raggedCoefV-class . 86
raghat1 . 87
randomArCoefficients . 88
row_lengths-methods . 90
sampZpi . 90
show_diff . 92
simuExperiment . 93
stdnormmoment . 95
tomarparambyComp . 97

Index 99

mixAR-package Mixture Autoregressive Models

Description

Model time series using mixture autoregressive (MAR) models. Implemented are frequentist (EM)
and Bayesian methods for estimation, prediction and model evaluation. See Wong and Li (2002)
<doi:10.1111/1467-9868.00222>, Boshnakov (2009) <doi:10.1016/j.spl.2009.04.009>), and the ex-
tensive references in the documentation.

4 mixAR-package

Details

Package mixAR provides functions for modelling with mixture autoregressive (MixAR) models.
The S4 class "MixARGaussian" can be used when the error distributions of the components are
standard Gaussian. The class "MixARgen" admits arbitrary (well, within reason) distributions for
the error components. Both classes inherit from the virtual class "MixAR".

Estimation can be done with fit_mixAR. Currently, the EM algorithm is used for estimation.

For "MixARGaussian" the M-step of the EM algorithm reduces to a system of linear equations.
For "MixARgen" the problem is substantially non-linear. The implementation is fairly general but
currently not optimised for efficiency. The specification of the error distributions went through
several stages and may still be reviewed. However, backward compatibility will be kept.

Author(s)

Georgi N. Boshnakov [aut, cre], Davide Ravagli [aut]

Maintainer: Georgi N. Boshnakov <georgi.boshnakov@manchester.ac.uk>

References

Akinyemi MI (2013). Mixture autoregressive models: asymptotic properties and application to
financial risk. Ph.D. thesis, Probability and Statistics Group, School of Mathematics, University of
Manchester.

Boshnakov GN (2009). “Analytic expressions for predictive distributions in mixture autoregressive
models.” Stat. Probab. Lett., 79(15), 1704-1709. doi:10.1016/j.spl.2009.04.009.

Boshnakov GN (2011). “On First and Second Order Stationarity of Random Coefficient Models.”
Linear Algebra Appl., 434(2), 415–423. doi:10.1016/j.laa.2010.09.023.

Fong PW, Li WK, Yau CW, Wong CS (2007). “On a mixture vector autoregressive model.” Can. J.
Stat., 35(1), 135-150.

Ravagli D, Boshnakov GN (2020). “Bayesian analysis of mixture autoregressive models covering
the complete parameter space.” 2006.11041, https://arxiv.org/abs/2006.11041.

Ravagli D, Boshnakov GN (2020). “Portfolio optimization with mixture vector autoregressive mod-
els.” 2005.13396, https://arxiv.org/abs/2005.13396.

Hossain AS (2012). Complete Bayesian analysis of some mixture time series models. Ph.D. thesis,
Probability and Statistics Group, School of Mathematics, University of Manchester.

Wong CS (1998). Statistical inference for some nonlinear time series models. Ph.D. thesis, Univer-
sity of Hong Kong, Hong Kong.

Wong CS, Li WK (2000). “On a mixture autoregressive model.” J. R. Stat. Soc., Ser. B, Stat.
Methodol., 62(1), 95-115.

Wong CS, Li WK (2001). “On a logistic mixture autoregressive model.” Biometrika, 88(3), 833-
846. doi:10.1093/biomet/88.3.833.

Wong CS, Li WK (2001). “On a mixture autoregressive conditional heteroscedastic model.” J. Am.
Stat. Assoc., 96(455), 982-995. doi:10.1198/016214501753208645.

https://doi.org/10.1016/j.spl.2009.04.009
https://doi.org/10.1016/j.laa.2010.09.023
https://arxiv.org/abs/2006.11041
https://arxiv.org/abs/2005.13396
https://doi.org/10.1093/biomet/88.3.833
https://doi.org/10.1198/016214501753208645

mixAR-package 5

Examples

object 'exampleModels' contains a number of models for examples and testing
names(exampleModels)
exampleModels$WL_ibm

some of the models below are available in object 'exampleModels';
the examples here show how to create them from scratch
mo_WLprob <- c(0.5439, 0.4176, 0.0385) # model coefficients from Wong&Li
mo_WLsigma <- c(4.8227, 6.0082, 18.1716)
mo_WLar <- list(c(0.6792, 0.3208), c(1.6711, -0.6711), 1)

mo_WL <- new("MixARGaussian", prob = mo_WLprob, scale = mo_WLsigma, arcoef = mo_WLar)

mo_WL_A <- new("MixARGaussian" # WongLi, model A
, prob = c(0.5, 0.5)
, scale = c(5, 1)
, shift = c(0, 0)
, arcoef = list(c(0.5), c(1.1))
)

mo_WL_B <- new("MixARGaussian" # WongLi, model B
, prob = c(0.75, 0.25)
, scale = c(5, 1)
, shift = c(0, 0)
, arcoef = list(c(0.5), c(1.4))
)

mo_WL_I <- new("MixARGaussian" # WongLi, model I
, prob = c(0.4, 0.3, 0.3)
, scale = c(1, 1, 5)
, shift = c(0, 0, -5)
, arcoef = list(c(0.9, -0.6), c(-0.5), c(1.50, -0.74, 0.12))
)

mo_WL_II <- new("MixARGaussian" # WongLi, model II
, prob = c(0.4, 0.3, 0.3)
, scale = c(1, 1, 5)
, shift = c(5, 0, -5)
, arcoef = list(c(0.9, -0.6), c(-0.7, 0), c(0, 0.80))
)

MixAR models with arbitrary dist. of the components
(user interface not finalized)

Gaussian
mo_WLgen <- new("MixARgen", prob = mo_WLprob, scale = mo_WLsigma, arcoef = mo_WLar,

dist = list(dist_norm))

t_3
mo_WLt3v <- new("MixARgen", prob = mo_WLprob, scale = mo_WLsigma, arcoef = mo_WLar,

dist = list(fdist_stdt(3, fixed = FALSE)))

6 mixAR-package

t_20, t_30, t_40 (can be used to start estimation)
mo_WLtf <- new("MixARgen", prob = mo_WLprob, scale = mo_WLsigma, arcoef = mo_WLar,

dist = list(generator =
function(par)

fn_stdt(par, fixed = FALSE), param = c(20, 30, 40)))

data(ibmclose, package = "fma") # for `ibmclose'

The examples below are quick but some of them are marked as 'not run'
to avoid cumulative time of more than 5s on CRAN.

fit a MAR(2,2,1) model
a0a <- fit_mixAR(as.numeric(fma::ibmclose), c(2, 2, 1), crit = 1e-4)
same with 2 sets of automatically generated initial values.

a0b <- fit_mixAR(as.numeric(fma::ibmclose), c(2, 2, 1), 2, crit = 1e-4)

fix the shift parameters:
a1a <- fit_mixAR(as.numeric(fma::ibmclose), c(2, 2, 1), fix = "shift", crit = 1e-4)
... with 3 sets of automatically generated initial values.

a1b <- fit_mixAR(as.numeric(fma::ibmclose), c(2, 2, 1), 3, fix = "shift", crit = 1e-4)

specify the model using a MixAR model object
a1c <- fit_mixAR(as.numeric(fma::ibmclose), a1a$model, init = a0a$model, fix = "shift",

crit = 1e-4)

fit a model like mo_WL using as initial values 2 automatically generated sets.
a2 <- fit_mixAR(as.numeric(fma::ibmclose), mo_WL, 2, fix = "shift", permute = TRUE,

crit = 1e-4)

moT_B3 <- new("MixARgen"
, prob = c(0.3, 0.3, 0.4)
, scale = c(2, 1, 0.5)
, shift = c(5, -5, 0)
, arcoef = list(c(0.5, 0.24), c(-0.9), c(1.5, -0.74, 0.12))

t4, t4, t10
, dist = distlist("stdt", c(4,10), fixed = c(FALSE, TRUE), tr = c(1, 1, 2))
)

moT_C1 <- new("MixARgen"
, prob = c(0.3, 0.3, 0.4)
, scale = c(2, 1, 0.5)
, shift = c(5, -5, 0)
, arcoef = list(c(0.5, 0.24), c(-0.9), c(1.5, -0.74, 0.12))

t4, t7, N(0,1)
, dist = distlist(c("stdt", "stdt", "stdnorm"), c(4,7))
)

bayes_mixAR 7

demonstrate reuse of existing models
exampleModels$WL_Bt_1
moT_C2 <- new("MixARgen"

, model = exampleModels$WL_Bt_1
, dist = distlist(c("stdt", "stdt", "stdnorm"), c(4,7)) # t4, t7, N(0,1)
)

moT_C3 <- new("MixARGaussian", model = exampleModels$WL_Bt_1)

bayes_mixAR Bayesian sampling of mixture autoregressive models

Description

Samples parameters of a mixture autoregressive model from respective posterior distributions.

Usage

bayes_mixAR(y, model, fix_shift = FALSE, a = .2, c = 2, tau, nsim, burnin)

Arguments

y a time series (currently a numeric vector).

model an object of class MixAR. Currently only handles MixARGaussian objects.

fix_shift should shift be kept fixed? If FALSE (default) shift is sampled.

a, c numeric hyperparameters, default values are from Richardson and Green (1997).

tau numeric vector of length g, the number of components in the mixture. Tuning
parameter for M-H move in updating AR parameters. If length(tau) is 1, same
tuning parameter is taken for all components.

nsim numeric, the number of iterations.

burnin numeric, the number of iterations taken as burn-in period.

Details

For details see Ravagli and Boshnakov (2020).

Value

a list with following elements:

mix_weights a g columns matrix with samples from the posterior distributions of the mixing
weights.

scale a g columns matrix with samples from posterior distributions of scale parame-
ters.

precision a g columns matrix with samples from posterior distributions of precision pa-
rameters, defined as 1 / (scale ^ 2).

8 Choose_pk

shift a g columns matrix with samples from posterior distributions of shift parameters,
namely phi_k0.

mu a g columns matrix with samples from posterior distributions of component
means, calculated as phi_k0 / (1 - phi_k1 - phi_k2 - ...).

ARcoeff a list which elements are matrices, one for each AR component in the mixture.

acc_rate numeric vector, the acceptance rate for M-H moves.

n_samp the sample size, calculated as nsim - burnin.

LatentZ the latest Z variables drawn (for utility only).

n_comp the number of components in the mixture.

fix_shift same as input, whether the shift parameter was kept fixed or not.

Author(s)

Davide Ravagli

References

Richardson S, Green PJ (1997). “On Bayesian Analysis of Mixtures with an Unknown Number of
Components.” J. R. Stat. Soc., Ser. B, Stat. Methodol., 59(4), 731-792.

Ravagli D, Boshnakov GN (2020). “Bayesian analysis of mixture autoregressive models covering
the complete parameter space.” 2006.11041, https://arxiv.org/abs/2006.11041.

Examples

prob <- c(0.5, 0.5)
sigma <- c(1, 2)
ar <- list(-0.5, 1)

model <- new("MixARGaussian", prob = prob, scale = sigma, arcoef = ar)

MAR(1,1) model
y <- mixAR_sim(model, 300, rep(0, max(model@order)))

bayes_mixAR(y, model, fix_shift = FALSE, tau = c(.15,.25), nsim = 20, burnin = 10)

Choose_pk Choose the autoregressive order of MixAR components

Description

Reversible Jump MCMC algorithm to choose the optimal autoregressive order of each component
of a mixture autoregressive model.

Usage

Choose_pk(y, model, fix_shift = FALSE, tau, pmax, method, par = NULL, nsim)

https://arxiv.org/abs/2006.11041

Choose_pk 9

Arguments

y a time series. Currently a numeric vector.

model an object inheriting from class "MixAR".

fix_shift whether the shift/mean parameter should be kept fixed to its starting value or
not. Default is FALSE.

tau tuning parameters for Metropolis-Hastings algorithm in sampling AR coeffi-
cients.

pmax the largest autoregressive order allowed for each component.

method character vector of length 1. Method for calculating probability of new AR order
to be increased/decreased by 1 unit. Currently available "Ratio", "Poisson"
and "NULL". Default is "NULL".

par numeric, parameter for tuning probabilities according to method. Ignored if
method is "NULL".

nsim numeric, the number of iterations.

Value

out a dataframe with g+1 columns. The first g columns contain the autoregressive
orders of the components, the last column how often a model is preferred, di-
vided by nsim.

fix_shift the choice made for the shift/mean parameters.

method the method used to increase/decrease AR orders.

Note

Choose_pk currenlty supports class "MixARGaussian" only.

Author(s)

Davide Ravagli

References

Ravagli D, Boshnakov GN (2020). “Bayesian analysis of mixture autoregressive models covering
the complete parameter space.” 2006.11041, https://arxiv.org/abs/2006.11041.

See Also

bx_dx for more details on the method

Examples

model <- new("MixARGaussian",
prob = exampleModels$WL_At@prob, # c(0.5, 0.5)
scale = exampleModels$WL_At@scale, # c(1, 2)
arcoef = list(-0.5, 1))
note: arcoef != list(-0.5, 1.1) == exampleModels$WL_At@arcoef@a

https://arxiv.org/abs/2006.11041

10 cond_loglik

set.seed(1234)
n <- 50 # 200
y <- mixAR_sim(model, n, rep(0, max(model@order)), nskip = 100)

nsim <- 25 # 100
pk_star <- Choose_pk(y, model, tau = c(.15, .25), pmax = 5, method = "NULL", nsim = nsim)

cond_loglik Log-likelihood of MixAR models

Description

Compute the log-likelihood of a MixAR model for a univariate time series.

Usage

cond_loglik(model, x, index)
cond_loglikS(model, x, index)

Arguments

model a MixAR model.

x a time series or numeric vector.

index a vector of integers giving the indices in x over which to compute the sum for
the log-likelihood, default is (p+1):length(x), where p is the maximum AR
order of the components of the model.

Details

cond_loglik computes the conditional log-likelihood of a MixAR model. Conditional here means
conditional on the first p values being fixed, where p is the maximum AR order of the components
of the model.

Argument index can be used to compute the sum over a subset of time points.

cond_loglikS is a variant of cond_loglik for the case when the input model contains seasonal
AR coefficients.

Value

the log-likelihood, a numeric value

Author(s)

Georgi N. Boshnakov and Davide Ravagli

dist_norm 11

Examples

data(ibmclose, package = "fma") # doesn't work with fma v2.4, using '::'
cond_loglik(exampleModels$WL_ibm, as.numeric(fma::ibmclose))
cond_loglik(exampleModels$WL_ibm_gen, as.numeric(fma::ibmclose))

data(lynx) # for 'lynx' data
sar <- new("raggedCoefS", a = list(c(1.1022, -0.2835), c(1.5279, -0.8871)),

as = list(c(0, 0), 0), s = 10)

SMAR(2; 2, 2)(2, 1)_10
model_s10 <- new("MixARGaussian", prob = c(.3, .7), scale = c(.08, .202),

arcoef = sar, shift = c(.7,1))
cond_loglikS(model_s10, log(lynx))
cond_loglikS(model_s10, log(lynx), index = 45:114) # on reduced dataset

dist_norm Functions for the standard normal distribution

Description

The noise distributions are specified by a list of functions for the density, quantiles, etc. This object
demonstrates this for the standard normal distribution.

Usage

dist_norm

Format

This is a list of functions or names of functions for calculations related to the standard normal
distribution. Currently it has elements with the following names: "pdf", "cdf", "rand", "logpdf",
"Fscore", "xFscore", "Parscore", "get_param", "set_param", "any_param", "show".

Details

dist_norm may be used to specify the noise distribution for MixAR models. It can be used as a
template if other distributions are needed, see also fdist_stdnorm.

See Also

fdist_stdnorm

Examples

dist_norm
dist_norm$pdf
dist_norm$cdf

12 em_est_sigma

em_est_dist Optimise scale parameters in MixARgen models

Description

Optimise the scale parameters in MixAR models from class MixARgen. Internal function.

Usage

em_est_dist(tau, etk, parscore, sigma, nu, logpdf)

Arguments

tau conditional probabilities, an object of class "MixComp", see ’Details’.

etk component residuals, see ’Details’.

parscore the score function(s), see ’Details’.

sigma current values of the scale parameters, a numeric vector.

nu current values of the parameters. w.r.t. which optimisation is done.

logpdf the log of pdf as a function of the parameters.

Details

One or more of the error distributions of a MixAR model may have parameters that are considered
unknown. In that case em_est_dist can be used to optimise with respect to them.

The representation of the error distributions in "MixARgen" models carries all the necessary in-
formation about parameters. em_est_dist works by extracting their current values from logpdf,
passes them to the optimisation function (or equation solver) and stores the result back into logpdf.
em_est_dist is quite general, as long as logpdf is prepared according to the conventions it expects
(this is so if they are valid elements of the dist slot of "MixARgen" objects).

Value

the new values of the parameters

em_est_sigma Update the scale parameters of MixAR models

Description

Calculates estimates of scale parameters of MixAR models from conditional probabilities and mix-
ture ‘residuals’. Used in EM algorithm.

em_rinit 13

Usage

tauetk2sigmahat(tau, etk)

em_est_sigma(tau, etk, Fscore, sigma,
dontfix = rep(TRUE, length(sigma)), compwise = FALSE)

Arguments

tau the conditional probabilities for the groups, a "MixComp" object.

etk component "residuals", MixComp object(?).

Fscore the score function(s) of the noise distributions.

sigma current values of the scale parameters.

compwise if TRUE solve the equations component-wise, see ’Details.

dontfix a logical vector containig TRUE in the positions of elements of sigma that are to
be estimated.

Details

tauetk2sigmahat calculates estimates of the scale parameters for a MixAR time series with Gaus-
sian components. There is an explicit formula in that case.

em_est_sigma calculates estimates of the scale parameters in the general case. The non-linear
equations are solved using functions from package BB. The equations for the components can often
be solved independently. When that is the case, compwise may speed things up a little.

Value

The new values of the scale parameters, a numeric vector

em_rinit Gaussian EM-step with random initialisation

Description

Gaussian EM-step with random initialisation.

Usage

em_rinit(y, order, partempl)

etk2tau(etk)

14 est_templ

Arguments

y time series.

order MixAR order, vector of length the number of components.

partempl parameter template, a list containing one element for each mixture component,
see randomArCoefficients.

etk MixAR component residuals, a matrix.

Details

em_rinit generates random MAR residuals, performs a non-distributional E-step, and a Gaussian
M-step.

etk2tau estimates tau from component residuals only. Note that this is unlike em_tau, which also
needs the noise pdf’s, as well as estimates of the mixture probabilities.

em_rinit uses etk2tau to start the EM algorithm.

Value

for em_rinit, an object from class "MixARGaussian"

for etk2tau, a matrix representing tau (i-th row contains probabilities corresponding to the i-th
observation)

Author(s)

Georgi N. Boshnakov

est_templ Create estimation templates from MixAR model objects

Description

Create estimation templates from MixAR model objects.

Usage

est_templ(model, shift = TRUE, ...)

Arguments

model a "MixAR" object.

shift logical, see Details.

... currently not used.

exampleModels 15

Details

Argument model is used as a template to specify values of parameters and/or which parameters
to estimate or fix. In general, If a value of a parameter in model is NA, then it is to be estimated.
Otherwise the parameter is taken as is.

The current implementation is incomplete. In particular, the AR parameters are always designated
for estimation.

Argument shift can be used to overwrite some or values component shift in model. If shift has
length one, it is replicated to the number of MixAR components. If shift[k] is TRUE, then the shift
coefficient for the k-th component is set to NA to request its estimation. Otherwise, the value of the
shift for the k-th component in model is taken.

Argument shift has a default of TRUE which causes the shift coefficients to be estimated irrespec-
tively of their values in model.

est_templ returns a list with as many components as there are MixAR components in the model.
The k-th component of the list is itself a list specifing which parameters of the i-th MixAR compo-
nent to estimate or fix.

Value

a list, as described in Details.

Examples

exampleModels$WL_A
est_templ(exampleModels$WL_A)
est_templ(exampleModels$WL_A, shift = FALSE)

exampleModels$WL_I
est_templ(exampleModels$WL_I)

exampleModels MixAR models for examples and testing

Description

MixAR models for examples and testing.

Usage

exampleModels

16 exampleModels

Details

Coefficients of models from the examples in Wong and Li (2000). Variations on these with differ-
ent noise distributions are used throughout the examples in mixAR. The models are from classes
inheriting from class "MixAR".

exampleModels is a list with the following components:

WL_ibm
WL_A
WL_B
WL_I
WL_II
WL_ibm_gen
WL_ibm_t3v
WL_ibm_tf
WL_At
WL_Bt_1
WL_Bt_2
WL_Bt_3
WL_Ct_1
WL_Ct_2
WL_Ct_3

Each component is a MixAR model, i.e. an object inheriting from class "MixAR".

Source

Wong CS, Li WK (2000). “On a mixture autoregressive model.” J. R. Stat. Soc., Ser. B, Stat.
Methodol., 62(1), 95-115.

Examples

use these instead of moWL, moWL_A, moWL_B, etc.
exampleModels$WL_ibm

exampleModels$WL_A
exampleModels$WL_B
what is the difference between A and B?
show_diff(exampleModels$WL_A, exampleModels$WL_B)

exampleModels$WL_I
exampleModels$WL_II
#show_diff(exampleModels$WL_I, exampleModels$WL_II)

exampleModels$WL_ibm_gen
exampleModels$WL_ibm_t3v
exampleModels$WL_ibm_tf
#show_diff(exampleModels$WL_ibm_gen, exampleModels$WL_ibm_t3v)

exampleModels$WL_At

fit_mixAR-methods 17

exampleModels$WL_Bt_1
exampleModels$WL_Bt_2
exampleModels$WL_Bt_3
what is different between Bt_2 and Bt_1? (df of component 2)
show_diff(exampleModels$WL_Bt_2, exampleModels$WL_Bt_1)

exampleModels$WL_Ct_1
exampleModels$WL_Ct_2
exampleModels$WL_Ct_3

The models were created with something like:
moWLprob <- c(0.5439,0.4176,0.0385)
moWLsigma <- c(4.8227,6.0082,18.1716)
moWLar <- list(c(0.6792,0.3208), c(1.6711,-0.6711), 1)

moWL <- new("MixARGaussian", prob = moWLprob, scale = moWLsigma,
arcoef = moWLar)

moWLgen <- new("MixARgen", prob = moWLprob, scale = moWLsigma,
arcoef = moWLar, dist = list(dist_norm))

clean up a bit
rm(moWLprob, moWLsigma, moWLar, moWL, moWLgen)

fit_mixAR-methods Fit mixture autoregressive models

Description

Estimate a MixAR model for a time series. This is a generic function. The methods defined in
package mixAR are described here.

Usage

fit_mixAR(x, model, init, fix, ...)

Arguments

x a time series.

model model, object inheriting from MixAR class.

init what initializations to do, see Details.

fix which parameters to fix, see Details.

... additional arguments for the methods.

18 fit_mixAR-methods

Details

Method dispatch is done on the first three arguments: x, model and init.

model specifies the model to fit. If model inherits from "MixAR", it is used as a template. If init is
missing, the parameters of model are also used as initial values. model can also be a numeric vector
specifying the order of a MixAR model with Gaussian components.

Argument init can be used to give initial values in variety of ways. If it is a MixAR object it
doesn’t need to be of the same class as model, to allow using as initial values common parameters
of different MixAR models. A positive integer value of init asks to run the fitting procedure init
times, each time generating random initial values.

init can also be a list. In that case, each component of the list should itself be an acceptable value
for init and the fitting procedure is run with each component of init.

Argument fix can be given in a number of ways. Note however that currently there is no method
dispatch on it.

Currently the default method for fit_mixAR just throws error, since there seems no suitable default
task to do.

See individual methods for further details.

Value

a MixAR model or a list of MixAR models, depending on the arguments.

Methods

signature(x = "ANY", model = "ANY", init = "ANY") The default method throws error.

signature(x = "ANY", model = "MixAR", init = "missing") This is equivalent to setting init
= model.

signature(x = "ANY", model = "MixAR", init = "MixAR") model is a template for the result,
init specifies initial values for the parameters. In principle, model and init may be from
different classes, to allow for example using AR coefficients from a Gaussian fit for other
distributions.

signature(x = "ANY", model = "MixAR", init = "numeric") init must be a single positive in-
teger here. The model is fitted init times, each time starting with a new set of randomly
generated initial values. If select is TRUE, the default, the model with the largest likelihood
is returned, otherwise a list containing the init fitted models is returned.

signature(x = "ANY", model = "MixAR", init = "list") Each element of the list init should
be an acceptable value for init. The model is fitted with the initial value set to each element
of init. A list containing the fitted models is returned.

signature(x = "ANY", model = "MixARGaussian", init = "MixAR")

signature(x = "ANY", model = "numeric", init = "missing") This is equivalent to setting init
= 1.

signature(x = "ANY", model = "numeric", init = "numeric") A numeric model should be a
vector of non-negative integers specifying the order of the MixAR model. The distribution of
the components is assumed Gaussian.

fit_mixARreg-methods 19

Examples

model coefficients from Wong&Li (IBM fit)
prob <- exampleModels$WL_ibm@prob # c(0.5439, 0.4176, 0.0385)
sigma <- exampleModels$WL_ibm@scale # c(4.8227, 6.0082, 18.1716)
ar <- exampleModels$WL_ibm@arcoef@a # list(c(0.6792, 0.3208), c(1.6711, -0.6711), 1)

data(ibmclose, package = "fma") # `ibmclose'

mot30 <- new("MixARgen", prob = prob, scale = sigma, arcoef = ar,
dist = distlist("stdt", c(30, 30, 30)))

mot20_30_40 <- new("MixARgen", prob = prob, scale = sigma, arcoef = ar,
dist = distlist("stdt", c(20, 30, 40)))

mo_t20_t30_norm <- new("MixARgen", prob = prob, scale = sigma, arcoef = ar,
dist = distlist(c("stdt", "stdt", "stdnorm"), c(20, 30)))

Gaussian components
fi0 <- fit_mixAR(fma::ibmclose, exampleModels$WL_ibm, fix = "shift", crit = 1e-4)
fi0$model

if(FALSE){ # don't run on CRAN to save a couple of seconds
remove minniter/maxniter below for realistic results.

std-t components
fi1 <- fit_mixAR(fma::ibmclose, mot30, fix = "shift",

crit = 1e-4, minniter = 1, maxniter = 3)
fi1$model

1st and 2nd components std-t, 3rd Gaussian
fi2 <- fit_mixAR(fma::ibmclose, mo_t20_t30_norm, fix = "shift",

crit = 1e-4, minniter = 1, maxniter = 3)
fi2$model
}

fit_mixARreg-methods Fit time series regression models with mixture autoregressive residuals

Description

Estimate a linear regression model for time series with residuals from a mixture autoregressive
process.

Usage

fit_mixARreg(x, y, mixARmodel, EMinit, ...)

mixARreg(x, y, mixARmodel, tol = 1e-6, niter = 200)

20 fit_mixARreg-methods

Arguments

x the response time series (currently a numeric vector).

y data.frame, matrix or numeric vector. If either of the first two, each column
must contain one covariate (currently numeric). A check for matching lengths
between x and y is done.

mixARmodel An object inheriting from class "MixAR", giving initial values for EM-estimation
of mixture autoregressive parameters. Currenlty only "MixARGaussian" is sup-
ported.

EMinit starting values for EM estimation of MixAR parameters. If present, must be a
named list, containing at least prob and scale as numeric vectors, and a list for
arcoef.

tol threshold for convergence criterion.

... passed on to MixARreg.

niter maximal number of iterations.

Details

fit_mixARreg is a generic function. Currently there is no default method for fit_mixARreg. Ar-
guments y, mixARmodel, EMinit can be given in a number of ways, see individual methods for
details.

Argument mixARmodel gives the details of the the MixAR part of the model and initial values for
the parameters. For fit_mixARreg this can alternatively be done with a list using argument EMinit.
Currently, at least one of the two must be supplied, and if both are present EMinit is ignored.

mixARreg performs a two-step estimation of a linear regression model with mixture autoregressive
residuals. It is the workhorse for fit_mixARreg which calls it to do the computations.

Value

reg The summary output of the regression part of the model.

mixARmodel Estimates of the mixture autoregressive part of the model.

niter The number of iterations until convergence.

Methods

signature(x = "ANY", y = "data.frame", mixARmodel = "MixAR", EMinit = "missing") Covariates
y are supplied as data.frame: each column corresponds to one covariate. Initialization of
MixAR paramters is done using input mixARmodel

signature(x = "ANY", y = "matrix", mixARmodel = "MixAR", EMinit = "missing") Covariates
y are supplied as matrix: each column corresponds to one covariate. Initialization of MixAR
paramters is done using input mixARmodel

signature(x = "ANY", y = "numeric", mixARmodel = "MixAR", EMinit = "missing") Covariates
y is supplied as numeric: this method handles the simple regression case with a single cov-
airate. Initialization of MixAR paramters is done using input mixARmodel

signature(x = "ANY", y = "ANY", mixARmodel = "missing", EMinit = "list") EMinit must be
a named list (see ’Arguments’).

fit_mixVAR-methods 21

signature(x = "ANY", y = "ANY", mixARmodel = "MixAR", EMinit = "list") When both mixARmodel
and EMinit are supplied, the second is ignored.

Note

Estimation is done using the function mixARreg within each method.

Author(s)

Davide Ravagli and Georgi N. Boshnakov

See Also

fit_mixAR

Examples

Simulate covariates
set.seed(1234)
n <- 50 # for CRAN
y <- data.frame(rnorm(n, 7, 1), rt(n, 3), rnorm(n, 3, 2))

Build mixAR part
model <- new("MixARGaussian",

prob = exampleModels$WL_At@prob, # c(0.5, 0.5)
scale = exampleModels$WL_At@scale, # c(1, 2)
arcoef = exampleModels$WL_At@arcoef@a) # list(-0.5, 1.1)

Simulate from MixAR part
u <- mixAR_sim(model, n, 0)

x <- 10 + y[, 1] + 3 * y[, 2] + 2 * y[, 3] + u

Fit model

Using MixARGaussian
fit_mixARreg(x = x, y = y, mixARmodel = model, niter = 3)

Using EMinit
EMinit <- list(prob = exampleModels$WL_At@prob, scale = exampleModels$WL_At@scale,

arcoef = exampleModels$WL_At@arcoef@a)
fit_mixARreg(x = x, y = y, EMinit = EMinit, niter = 3)

fit_mixVAR-methods Fit mixture vector autoregressive models

Description

Estimate a MixVAR model for a multivariate time series. This is a generic function. The methods
defined in package MixAR are described here.

22 fit_mixVAR-methods

Usage

fit_mixVAR(x, model, fix, ...)

Arguments

x a multivariate time series (currently a numeric matrix).
model model, object inheriting from MixVAR class.
fix if TRUE, fix the shift parameters.
... additional arguments for the methods (not currently used).

Details

model specifies the model to fit. If model inherits from "MixVAR", it is used as a template. Estima-
tion is done via EM-Algorithm, using the function mixVARfit.
Currently the default method for fit_mixAR just throws error, since there seems no suitable default
task to do.

Value

a MixVAR model.

Methods

signature(x = "ANY", model = "MixVAR")

signature(x = "ANY", model = "ANY")

See Also

mixVARfit

Examples

AR <- list()
AR[[1]] <- array(c(0.5, -0.3, -0.6, 0, 0, 0.5, 0.4, 0.5, -0.3), dim = c(3, 3, 1))
AR[[2]] <- array(c(-0.5, 0.3, 0, 1, 0, -0.5, -0.4, -0.2, 0.5), dim = c(3, 3, 1))

prob <- c(0.75, 0.25)
shift <- cbind(c(0, 0, 0), c(0, 0, 0))

Sigma1 <- cbind(c(1, 0.5, -0.4), c(0.5, 2, 0.8), c(-0.4, 0.8, 4))
Sigma2 <- cbind(c(1, 0.2, 0), c(0.2, 2, -0.15), c(0, -0.15, 4))
Sigma <- array(c(Sigma1, Sigma2), dim = c(3, 3, 2))

m <- new("MixVARGaussian", prob = prob, vcov = Sigma, arcoef = AR, shift = shift)

set.seed(1234)
y <- mixVAR_sim(m, n = 100, init = matrix(0, ncol = 3), nskip = 50, flag = FALSE)

fit_mixVAR(y, m, tol = 1e-3)
mixVARfit(y, m, tol = 1e-3)

fnoise 23

fnoise Generator functions for noise distributions

Description

These functions and objects are mostly internal and should not be needed for routine use. Generate
noise distribution, currently standard normal and standardised t-distributions. These functions can
be used as templates for new distributions.

Usage

fdist_stdnorm()

fdist_stdt(df, fixed = TRUE)

fn_stdt(df, fixed = TRUE)

b_show(x)

distlist(type, param, ncomp = NULL, fixed = FALSE, tr = NULL, ...)

ed_nparam

ed_parse(s)

ed_skeleton(df, fixed = FALSE, n = length(df), tr = NULL)

ed_src

ed_stdnorm

ed_stdt

ed_stdt0

ed_stdt1

ft_stdt

Arguments

df degrees of freedom

fixed if TRUE, the parameters are fixed, otherwise they are variable, see Details.

x a fitted object.

type list of distributions.

param parameters.

24 fnoise

ncomp number of components.
tr transformation.
... not used.
s named vector.
n number of different degrees of freedom.

Details

If argument fixed is TRUE, estimation functions assume that the parameter(s) are fixed, otherwise
they estimate it. The support is incomplete, see below.
fdist_stdnorm is for the standard normal distribution. For example dist_norm is generated by it.
fdist_stdt is for the t-distribution with df degrees of freedom.
fn_stdt is also for the t-distribution but the degrees of freedom, df, may be a vector. The value is
a list of distributions. Although the list can be obtained by repeated calls of fdist_stdt
The support is incomplete. In particular, if parameter fixed is TRUE, changes to the parameter(s)
should probably not be allowed (this can be achieved by simply dropping the corresponding function
from the list). However, a thorough rethinking is necessary, as I introduced it on the fly while devel-
oping estimation functions and forbidding changes may necessitate changes in the code. Changes
are useful for estimation for convenience but also to avoid recreating the whole distributions again
and again.
However, there is a major drawback, which in the final version needs to be addressed satisfactorily.
Since parameters are held in local environments, changes to the parameters are reflected in copies
of the objects. For example, an estimation function (or the user) may call another function with a
model containing an object generated by the above functions and assign the result to a new object.
However if the parameters of the noise distribution are changed in the process this will be reflected
in the original model.
Note that the above effect is valid only if an object generated by the above functions is reused.
Objects created by different calls have different environments, so the problem does not arise for
them.

Examples

stdt3 <- fdist_stdt(3)
stdt3v <- fdist_stdt(3, fixed = FALSE)
fn_stdt(c(20, 30, 40), fixed = FALSE)

mo_tf <- new("MixARgen", prob = exampleModels$WL_ibm@prob,
scale = exampleModels$WL_ibm@scale, arcoef = exampleModels$WL_ibm@arcoef@a,
dist = list(generator = function(par)

fn_stdt(par, fixed = FALSE), param = c(20, 30, 40)))
mo_tf
str(mo_tf)

noise_dist(mo_tf, "pdf")
parameters(mo_tf)
parameters(mo_tf, names = TRUE)
get_edist(mo_tf)
noise_params(mo_tf)

get_edist-methods 25

get_edist-methods Methods for function get_edist in package mixAR

Description

Methods for function get_edist in package mixAR

Methods

get_edist gives the error (or noise) distribution of MixAR objects.

Currently the distribution is returned as a list of functions. The list contains one element for each
component. If the error distributions of all components are the same, then the list may contain a
single element representing the common error distribution.

Note that the distribution is not necessarily stored in slot dist in this format, see the description
of this slot in class "MixARgen". Such a slot may even not exist if the distribution of the error
components is fixed as is the case for class MixARGaussian.

Each subclass of MixAR needs to define a method for get_edist.

signature(model = "MixAR") Issue an error message and stop.
This method is invoked for subclasses of MixAR that have not defined their own method for
get_edist. This is an error.

signature(model = "MixARGaussian") Return an object representing the fact that the error dis-
tributions of the components of MixARGaussian objects are standard normal.

signature(model = "MixARgen") Return an object representing the error distributions of the com-
ponents of MixARgen objects. The distributions are not necessarilly the same for such objects.

inner Generalised inner product and methods for class "MixComp"

Description

Generalised inner product and methods for class MixComp. The methods for MixComp provide
for very convenient computing with MixAR models.

Usage

inner(x, y, star = "*", plus = .mplus)

Arguments

x the first argument.
y the second argument.
star function to apply to pairs of elements from x and y, default is multiplication, as

for the usual inner product.
plus function to apply to combine the results from the pairs, default is addition, as

for the usual inner product.

26 inner

Details

inner computes a generalised inner product x . y, where multiplication and summation can be
replaced by other functions.

The default method of inner applies star to the corresponding pairs of elements and combines
them with plus. There is no recycling, if x and y have different lengths, an error is raised. The
elements of x and y are accessed with "[[". plus should be an n-ary operation.

Value

the inner product, the type of the result depends on the arguments

Methods

Methods for inner product between a "MixComp" object and a vector are similar to a product between
a matrix and a vector but comply with the conventions of class "MixComp". For this reason they
are described in the help page for class "MixComp", along with methods for other functions and
operators applied to "MixComp" objects.

signature(x = "ANY", y = "ANY", star = "ANY", plus = "ANY") This is the default method, see
section Details.

signature(x = "MixComp", y = "missing", star = "missing", plus = "missing") see "MixComp".

signature(x = "MixComp", y = "numeric", star = "missing", plus = "missing") see "MixComp".

signature(x = "numeric", y = "MixComp", star = "missing", plus = "missing") see "MixComp".

signature(x = "MixComp", y = "numeric", star = "ANY", plus = "ANY") see "MixComp".

signature(x = "MixComp", y = "numeric", star = "ANY", plus = "missing") see "MixComp".

See Also

"MixComp"

Examples

inner(1:3, 2:4) # [1] 20
class(inner(1:3, 2:4)) # [1] "integer"
compare to:
1:3 %*% 2:4 # 20, but (1,1)-matrix
class(1:3 %*% 2:4) # matrix

isStable 27

isStable Check if a MixAR model is stable

Description

Checks if a MixAR model is stable. This is also the second order stationarity condition.

Usage

isStable(x)

Arguments

x the model

Details

If each component of a MixAR model corresponds to a stable autoregression model, then the
MixAR model is also stable. However, the MixAR model may be stable also when some of its
components correspond to integrated or explosive AR models, see the references.

Value

True if the model is stable (second order stationary), FALSE otherwise.

References

Boshnakov GN (2011). “On First and Second Order Stationarity of Random Coefficient Models.”
Linear Algebra Appl., 434(2), 415–423. doi:10.1016/j.laa.2010.09.023.

Wong CS, Li WK (2000). “On a mixture autoregressive model.” J. R. Stat. Soc., Ser. B, Stat.
Methodol., 62(1), 95-115.

Examples

isStable(exampleModels$WL_I)
isStable(exampleModels$WL_II)

https://doi.org/10.1016/j.laa.2010.09.023

28 label_switch

label_switch A posteriori relabelling of a Markov chain

Description

Takes the output from a MCMC simulation of parameters of a mixture, and detects whether labels
switch has occured while sampling, using the method by Celeux (2000).

Usage

label_switch(x, m)

Arguments

x output from an MCMC sampling of a mixture. A matrix, each column corre-
sponds to one component of the mixture.

m the number of observations in the sample that will be used to initialise the algo-
rithm. m~100 is recommended.

Details

Function can be directly executed when x is one of mix_weights, scale, precision, shift or mu
from bayes_mixAR output. ARcoeff cannot be input as it is, but element from the list may be used.

Value

A list of 2:

x The input matrix, with adjusted labels

true_perm The "true" permutation at each iteration.

Note

There is no absolute choice on what x should be to obtain the "true" permutation at any given point.
User is subject to make the most suitable choice, given output of their MCMC.

Author(s)

Davide Ravagli

References

Celeux G (2000). Bayesian Inference of Mixture: The Label Switching Problem.. Payne R., Green
P. (eds) COMPSTAT. Physica, Heidelberg.

See Also

bayes_mixAR

lik_params 29

Examples

model <- new("MixARGaussian",
prob = exampleModels$WL_At@prob, # c(0.5, 0.5)
scale = exampleModels$WL_At@scale, # c(1, 2)
arcoef = exampleModels$WL_At@arcoef@a) # list(-0.5, 1.1)

y <- mixAR_sim(model, n = 300, init = rep(0, which.max(model@order)))

just examples, use larger numbers in practice
nsim <- 30 # 200
burnin <- 10 # 100
x <- bayes_mixAR(y, model, fix_shift = FALSE, tau = c(.15, .25),

nsim = nsim, burnin = burnin)

label_switch(x$mix_weights, m = 5)

lik_params Vector of parameters of a MixAR model

Description

Give a numeric vector containing non-redundant parameters of a MixAR model in a form suitable
for use by optimisation routines. The methods defined in package mixAR for this generic function
are described here.

Usage

lik_params(model)

Arguments

model a MixAR model.

Details

lik_params gives the parameters of a MixAR model as a numeric vector.

This is a generic function. Parameters common to all MixAR models are arranged as described
below. There are no other parameters when the error distributions do not contain parameters of their
own. Methods for sub-classes with additional parameters should append them after the common
parameters.

If k is the number of components and πi is the probability associated with the ith component, then
the parameters are put in a vector as follows:

1. component probabilities, π1, . . . , πk−1, (note: πk is not included)

2. scales, σ1, . . . , σk,

3. shifts, µ1, . . . , µk,

4. AR coefficients of the 1st component,

30 make_fcond_lik-methods

5. AR coefficients of the 2nd component,

6. . . .

7. AR coefficients of the kth component.

Value

A numeric vector containing all parameters except the probability associated with the last compo-
nent.

Methods

signature(model = "MixAR")

signature(model = "MixARgen")

Note

The probability associated with the kth component is omitted as it is redundant. This makes it
possible to try unconstrained optimisation though it is not likely to give useful results since there
are other restrictions on the probabilities.

Author(s)

Georgi N. Boshnakov

make_fcond_lik-methods

Create a function for computation of conditional likelihood

Description

Create a function for the computation of the conditional likelihood of MixAR models for a given
time series. The methods for this generic function defined in package mixAR are described here.

Usage

make_fcond_lik(model, ts)

Arguments

model a MixAR model

ts the time series

marg_loglik 31

Details

The returned value is a function, say f(x), whose only argument is a numeric vector of parameters
with the arrangement of lik_params, for which it computes the conditional loglikelihood. f can be
given to optimisation routines.

Argument model is an object inheriting from MixAR and determines the structure of the MixAR
model for the function, f, that it creates. So, properties of the model, such as number of components,
AR order, and distribution of the noise components are fixed when f is created and only the numeric
values of the parameters are changed by calls to it.

Value

a function of one argument, the parameters of a MixAR model as a numeric vector with the arrange-
ment of lik_params, for which it computes the conditional loglikelihood

Todo

The environment of the returned function contains the time series and the model object (initially
argument model, later the model used in the last call to f). So, these things can be extracted from
f. Is it necessary to create convenience functions?

Methods

signature(model = "MixAR", ts = "numeric")

See Also

mix_pdf, mix_cdf

marg_loglik Calculate marginal loglikelihood at high density points of a MAR
model.

Description

The function implements the method by Chib (1995) and Chib and Jeliazkov (2001) for calculation
of the marginal loglikelihood of a mixture autoregressive model. It automatically finds high density
values for model parameters, and evaluates the likelihood at such points.

Usage

marg_loglik(y, model, tau, nsim, prob_mod)

32 marg_loglik

Arguments

y a time series (currently a numeric vector).
model object of formal class MixAR, containing initial values for the parameters. Cur-

rently available for MixARGaussian objects only.
tau tuning parameter for Metropolis-Hasting move to update autoregressive param-

eters.
nsim sample size on which to evaluate highest density values.
prob_mod this is currently the output from Choose_pk: the proportion of times the "best

model" was chosen.

Details

nsim is the sample size on which to evaluate highest density values for each set of parameters.
For example, choosing nsim=1000 results in 1000*(g+3) (1000 iterations for each autoregressive
component, plus 1000 for mean and scale parameters and mixing weights).

Value

A list containing the following elements:

marg_loglik value of the marginal loglikelihood.
phi_hd set of highest density autoregressive parameters.
prec_hd set of highest density precision parameters.
mu_hd set of highest density mean parameters.
weig_hd set of highest density mixing weights.

Author(s)

Davide Ravagli

References

Chib S (1995). “Marginal likelihood from the Gibbs output.” J. A. Stat. Ass., 90(432), 1313-1321.
Chib S, Jeliazkov I (2001). “Marginal likelihood from the Metropolis-Hastings output.” J. A. Stat.
Ass., 96(453), 270-281.

Examples

prob <- c(0.5, 0.5)
sigma <- c(1, 2)
arco <- list(-0.5, 1)

model <- new("MixARGaussian", prob = prob, scale = sigma, arcoef = arco)

set.seed(1234)
y <- mixAR_sim(model, 250, rep(0, max(model@order)), nskip = 100) # data

nsim <- 10 # 50
marg_loglik(y, model, tau = c(.15, .25), nsim = nsim, 0.5)

MixAR-class 33

MixAR-class Class "MixAR" — mixture autoregressive models

Description

Mixture autoregressive models

Objects from the Class

A virtual Class: no objects can be created from it.

Derived classes add distribution properties, e.g. use class "MixARGaussian" for MixAR models
with Gaussian error components.

Slots

prob: the mixing probabilities, "numeric".

order: the AR orders, "numeric".

shift: intercept terms, "numeric".

scale: scaling factor, "numeric".

arcoef: autoregressive coefficients, an object from class "raggedCoef" containing one row for
each mixture component.

Methods

fit_mixAR signature(x = "ANY", model = "MixAR", init = "list"): ...

fit_mixAR signature(x = "ANY", model = "MixAR", init = "missing"): ...

fit_mixAR signature(x = "ANY", model = "MixAR", init = "MixAR"): ...

fit_mixAR signature(x = "ANY", model = "MixAR", init = "numeric"): ...

fit_mixAR signature(x = "ANY", model = "MixARGaussian", init = "MixAR"): ...

get_edist signature(model = "MixAR"): ...

initialize signature(.Object = "MixAR"): ...

lik_params signature(model = "MixAR"): ...

make_fcond_lik signature(model = "MixAR", ts = "numeric"): ...

mix_ek signature(model = "MixAR", x = "numeric", index = "numeric", xcond = "missing",
scale = "missing"): ...

mix_ek signature(model = "MixAR", x = "numeric", index = "numeric", xcond = "missing",
scale = "logical"): ...

mix_ek signature(model = "MixAR", x = "numeric", index = "missing", xcond = "numeric",
scale = "missing"): ...

mix_ek signature(model = "MixAR", x = "numeric", index = "missing", xcond = "numeric",
scale = "logical"): ...

34 mixAR-methods

mix_hatk signature(model = "MixAR", x = "numeric", index = "numeric", xcond = "missing"):
...

mix_ncomp signature(x = "MixAR"): ...
mixAR signature(template = "MixAR"): ...
noise_dist signature(model = "MixAR"): ...
noise_params signature(model = "MixAR"): ...
noise_rand signature(model = "MixAR"): ...
parameters signature(model = "MixAR"): ...
row_lengths signature(x = "MixAR"): ...

Author(s)

Georgi N. Boshnakov

See Also

codemixAR, classes "MixARGaussian", "MixARgen"

Examples

some models from subclasses of (virtual) class "MixAR"
names(exampleModels)
exampleModels$WL_A
exampleModels$WL_At

modify an existing model, here change the mixture weights
mixAR(exampleModels$WL_A, coef = list((prob = c(0.4, 0.6))))

mixAR-methods Create MixAR objects

Description

Generic function with methods for creating MixAR objects.

Usage

mixAR(template, coef, ..., filler = NA_real_)

Arguments

template an object to be used as a template for the new object, typically inheriting from
"MixAR". Alternatively, missing or a numeric vector specifying the order of the
MixAR model, see Details.

coef parameters for the new object a list with components "arcoef", "order", "prob",
"shift", and "scale".

... further arguments for methods.
filler value for unspecified parameters, default is NA_real_.

mixARemFixedPoint 35

Details

mixAR provides an alternative to the function new for specifying MixAR models.

If template is numeric vector, it is taken to specify the AR order of the model and the number of
mixture components. A Gaussian MixAR model is created with parameters filled initially with NA’s
and then updated with values given by coef. coef does not need to have values for all parameters
and may be missing altogether. If NA’s are not suitable for initialisation, a suitable value can be
specified with filler.

If template is a MixAR object, then the new object will have the class of template. The new
object is set initially to a copy of template and then updated with parameters specified by coef
(and maybe others for some methods).

In principle, the numeric parameters are vectors of length the number of components of the MixAR
model. For convenience, single values are replicated to the number of components. For this to
work, at least one component must be specified completely, for example the order. It is an error for
the parameters to imply conflicting number of components.

Methods

signature(template = "ANY")

signature(template = "MixAR")

See Also

class "MixARGaussian", class "MixARgen"

Examples

mixAR(coef = list(prob = c(.5,.5), scale = c(1,2),
arcoef = list(.5, 1.1), shift = c(0,0), order = c(1,1)))

mixAR(template = c(1,1))
mixAR(coef = list(order = c(1,1))) # same

m2 <- new("MixARGaussian", order = c(3, 2, 1),
arcoef = matrix(c(1:3, c(1:2, 0), c(1, 0, 0)), nrow = 3, byrow = TRUE))

m2a <- mixAR(m2, list(prob = c(0.5, 0.25, 0.25)))
show_diff(m2, m2a)

mixARemFixedPoint EM estimation for mixture autoregressive models

Description

Fit a mixture autoregressive model to a univariate time series using the EM algorithm.

36 mixARemFixedPoint

Usage

mixARemFixedPoint(y, model, est_shift = TRUE, crit = 1e-14,
maxniter = 200, minniter = 10, verbose = FALSE)

mixARgenemFixedPoint(y, model, crit = 1e-14, maxniter = 200,
minniter = 10, verbose = FALSE, ...)

Arguments

y a univariate time series.

model an object of class MixAR, a mixture autoregressive model providing the model
specifications and initial values for the parameters.

est_shift if TRUE optimise also w.r.t. the shift (constant) terms of the AR components, if
FALSE keep the shift terms fixed.

crit stop iterations when the relative change in the log-likelihood becomes smaller
than this value.

maxniter maximum number of iterations.

minniter minimum number of iterations, do at leat that many iterations.

... further arguments to be passed on to the M-step optimiser.

verbose print more details during optimisation.

Details

mixARemFixedPoint and mixARgenemFixedPoint estimate MixAR models with the EM algo-
rithm. For mixARemFixedPoint, the distribution of the components are fixed to be Gaussian. For
mixARgenemFixedPoint, the distributions can, in principle be arbitrary (well, to a point).

Starting with model, the expectation and maximisation steps of the EM algorithm are repeated until
convergence is detected or the maximum number of iterations, maxniter is exceeded.

Currently the convergence check is very basic—the iterations stop when the relative change in the
log-likelihood in the last two iterations is smaller than the threshold value specified by crit and at
least minniter iterations have been done.

The EM algorithm may converge very slowly. To do additional iterations use the returned value in
another call of this function.

Value

the fitted model as an object inheriting from "MixAR".

Note

This function was not intended to be called directly by the user (hence the inconvenient name).

Author(s)

Georgi N. Boshnakov

MixARGaussian-class 37

See Also

fit_mixAR which uses these functions for estimation, classes "MixARGaussian", "MixARgen"

Examples

data(ibmclose, package = "fma") # ibm data from BJ

m0 <- exampleModels$WL_ibm
m1 <- mixARemFixedPoint(fma::ibmclose, m0)
m1a <- mixARemFixedPoint(fma::ibmclose, m1$model)
show_diff(m1$model, m1a$model)

mixARemFixedPoint(fma::ibmclose, m0, est_shift = FALSE)

simulate a continuation of ibmclose, assuming m0
ts1 <- mixAR_sim(m0, n = 50, init = c(346, 352, 357), nskip = 0)
m2a <- mixARemFixedPoint(ts1, m0, est_shift = FALSE)$model
m2b <- mixARemFixedPoint(diff(ts1), m0, est_shift = FALSE)$model

MixARGaussian-class mixAR models with Gaussian noise components

Description

Class "MixARGaussian" represents MixAR models with Gaussian noise components.

Objects from the Class

Objects can be created by calls of the form new("MixARGaussian", ...), giving the elements of
the model as named arguments, see the examples below. All elements of the model, except arcoef,
are simple numeric vectors. From version 0.19-15 of package MixAR it is possible to create objects
using MixARGaussian(...). The two forms are completely equivalent.

arcoef contains the AR coefficients, one numeric vector for each mixture component. It can be
given as a "raggedCoef" object or as a list of numeric vectors.

To input a model with seasonal AR coefficients, argument passed to arcoef can be passed as a
raggedCoefS object, or as a list of three elements. For the latter, seasonality s must be explicitly
indicated. AR coefficients can be given as list or matrix within the main list (one for main AR
coefficients, named a, and one for seasonal AR coefficients, as). Each row of a input matrix/element
of the list denotes one component of the mixture. If not named, initialisation takes the first passed
element to be a and the second to be as.

The AR order of the model is inferred from arcoef argument. If argument order is given, it is
checked for consistency with arcoef. The shift slot defaults to a vector of zeroes and the scale
slot to a vector of ones.

The distribution of the noise components is standard Gaussian, N(0,1).

38 MixARGaussian-class

Slots

All slots except arcoef are numeric vectors of length equal to the number of components in the
model.

prob: probabilities of the mixture components

order: AR orders of the components

shift: the shift (intercept) terms of the AR components

scale: the standard deviations of the noise terms of the AR components

arcoef: The AR components, object of class "raggedCoef"

Extends

Class "MixAR", directly.

Methods

mix_cdf signature(model = "MixARGaussian", x = "numeric", index = "numeric", xcond = "missing"):
...

mix_cdf signature(model = "MixARGaussian", x = "numeric", index = "missing", xcond = "numeric"):
...

fit_mixAR signature(x = "ANY", model = "MixARGaussian", init = "MixAR"): ...

get_edist signature(model = "MixARGaussian"): ...

mix_cdf signature(model = "MixARGaussian", x = "missing", index = "missing", xcond = "numeric"):
...

mix_pdf signature(model = "MixARGaussian", x = "missing", index = "missing", xcond =
"numeric"): ...

mix_pdf signature(model = "MixARGaussian", x = "numeric", index = "missing", xcond =
"numeric"): ...

mix_pdf signature(model = "MixARGaussian", x = "numeric", index = "numeric", xcond =
"missing"): ...

noise_dist signature(model = "MixARGaussian"): ...

noise_rand signature(model = "MixARGaussian"): ...

Author(s)

Georgi N. Boshnakov

See Also

classes "MixARgen", "MixAR"

MixARgen-class 39

Examples

showClass("MixARGaussian")

load ibm data from BJ
data(ibmclose, package = "fma")

compute a predictive density, assuming exampleModels$WL_ibm model
for the first date after the end of the data
pdf1 <- mix_pdf(exampleModels$WL_ibm, xcond = as.numeric(fma::ibmclose))

plot the predictive density
(cdf is used to determine limits on the x-axis)
cdf1 <- mix_cdf(exampleModels$WL_ibm, xcond = as.numeric(fma::ibmclose))
gbutils::plotpdf(pdf1, cdf = cdf1, lq = 0.001, uq = 0.999)

compute lower 5% quantile of cdf1
gbutils::cdf2quantile(0.05, cdf = cdf1)

MixARgen-class Class "MixARgen"

Description

A class for MixAR models with arbitrary noise distributions. "MixARgen" inherits from "MixAR".

Objects from the Class

Objects can be created by calls of the form new("MixARgen", dist, ...) or mixARgen(...).
The two forms are completely equivalent. The latter is available from version 0.19-15 of package
MixAR.

Slots

Most slots are inherited from class "MixAR".

prob: the mixing probabilities, "numeric".

order: the AR orders, "numeric".

shift: intercept terms, "numeric".

scale: scaling factor, "numeric".

arcoef: autoregressive coefficients, an object from class "raggedCoef" containing one row for
each mixture component.

dist: Object of class "list", representing the noise distributions. The list contains one element
for each component of the MixAR model or a single element if the noise distribution is the
same for all components.
If the distributions do not contain parameters (e.g. Gaussian or t4) it is sufficient to give the
list of functions in the element dist of the list.

40 MixARgen-class

If the distributions do contain parameters the recommended arrangement is to give a list with
components generator and param, such that a call generator(param) should produce the
required list of distributions.
This is not finalised but if changed, backward compatibility with existing objects will be main-
tained.

Extends

Class "MixAR", directly.

Methods

get_edist signature(model = "MixARgen"): ...

initialize signature(.Object = "MixARgen"): ...

lik_params signature(model = "MixARgen"): ...

mix_cdf signature(model = "MixARgen", x = "missing", index = "missing", xcond = "numeric"):
...

mix_cdf signature(model = "MixARgen", x = "numeric", index = "missing", xcond = "numeric"):
...

mix_cdf signature(model = "MixARgen", x = "numeric", index = "numeric", xcond = "missing"):
...

mix_pdf signature(model = "MixARgen", x = "missing", index = "missing", xcond = "numeric"):
...

mix_pdf signature(model = "MixARgen", x = "numeric", index = "missing", xcond = "numeric"):
...

mix_pdf signature(model = "MixARgen", x = "numeric", index = "numeric", xcond = "missing"):
...

noise_dist signature(model = "MixARgen"): ...

noise_params signature(model = "MixARgen"): ...

noise_rand signature(model = "MixARgen"): ...

Examples

showClass("MixARgen")

exampleModels$WL_ibm_gen@dist
noise_dist(exampleModels$WL_ibm_gen, "cdf")
noise_dist(exampleModels$WL_ibm_gen, "pdf")
noise_dist(exampleModels$WL_ibm_gen, "pdf", expand = TRUE)
noise_dist(exampleModels$WL_ibm_gen, "cdf", expand = TRUE)

data(ibmclose, package = "fma") # for `ibmclose'

pdf1 <- mix_pdf(exampleModels$WL_ibm, xcond = as.numeric(fma::ibmclose))
cdf1 <- mix_cdf(exampleModels$WL_ibm, xcond = as.numeric(fma::ibmclose))
gbutils::plotpdf(pdf1, cdf = cdf1, lq = 0.001, uq = 0.999)

mixARnoise_sim 41

pdf1gen <- mix_pdf(exampleModels$WL_ibm_gen, xcond = as.numeric(fma::ibmclose))
cdf1gen <- mix_cdf(exampleModels$WL_ibm_gen, xcond = as.numeric(fma::ibmclose))
gbutils::plotpdf(pdf1gen, cdf = cdf1gen, lq = 0.001, uq = 0.999)

length(fma::ibmclose)
cdf1gena <- mix_cdf(exampleModels$WL_ibm_gen, xcond = as.numeric(fma::ibmclose)[-(369:369)])
pdf1gena <- mix_pdf(exampleModels$WL_ibm_gen, xcond = as.numeric(fma::ibmclose)[-(369:369)])
gbutils::plotpdf(pdf1gena, cdf = cdf1gena, lq = 0.001, uq = 0.999)

pdf1a <- mix_pdf(exampleModels$WL_ibm, xcond = as.numeric(fma::ibmclose)[-(369:369)])
cdf1a <- mix_cdf(exampleModels$WL_ibm, xcond = as.numeric(fma::ibmclose)[-(369:369)])
gbutils::plotpdf(pdf1a, cdf = cdf1a, lq = 0.001, uq = 0.999)

cdf1gena <- mix_cdf(exampleModels$WL_ibm_gen, xcond = as.numeric(fma::ibmclose)[-(369:369)])

cond_loglik(exampleModels$WL_ibm, as.numeric(fma::ibmclose))
cond_loglik(exampleModels$WL_ibm_gen, as.numeric(fma::ibmclose))

ts1gen <- mixAR_sim(exampleModels$WL_ibm_gen, n = 30, init = c(346, 352, 357), nskip = 0)
plot(ts1gen)

plot(mixAR_sim(exampleModels$WL_ibm_gen, n = 100, init = c(346, 352, 357), nskip = 0),
type = "l")

plot(diff(mixAR_sim(exampleModels$WL_ibm_gen, n = 100, init = c(346, 352, 357), nskip = 0)),
type = "l")

noise_dist(exampleModels$WL_ibm_gen, "Fscore")

prob <- exampleModels$WL_ibm@prob
scale <- exampleModels$WL_ibm@scale
arcoef <- exampleModels$WL_ibm@arcoef@a

mo_WLt3 <- new("MixARgen", prob = prob, scale = scale, arcoef = arcoef,
dist = list(fdist_stdt(3)))

mo_WLt30 <- new("MixARgen", prob = prob, scale = scale, arcoef = arcoef,
dist = list(fdist_stdt(30)))

mixARnoise_sim Simulate white noise series from a list of functions and vector of
regimes

Description

Simulate white noise series from a list of functions and vector of regimes. This function is used
internally for simulation from MixAR models.

Usage

mixARnoise_sim(rdist, z)

42 mixAR_BIC

Arguments

rdist a list of functions for random number generation, see ‘Details’.

z a vector of positive integers specifying the ’regimes’.

Details

If the length of the list rdist is max(z), then z[[i]] is the random number generator for regime i.
Alternatively, if rdist is of length one, then the same generator will be used for all regimes.

mixARnoise_sim returns a vector, say y, of the same length as z, such that y[i] is generated by
z[[i]].

Value

a numeric vector

See Also

mixAR_sim

Examples

MixAR with 2 components: N(0,1) and t_5
set.seed = 1234
z <- sample(2, size = 5, replace = TRUE)
mixARnoise_sim(list(rnorm, function(n) rt(n, 5)), z)

mixAR_BIC BIC based model selection for MixAR models

Description

BIC calculations for mixture autoregressive models.

Usage

mixAR_BIC(y, model, fix = NULL, comp_loglik = TRUE, index)
BIC_comp(x, y)

Arguments

y a time series.

model the model for which to calculate BIC, an object inheriting from class MixAR.
Alternatively, an output list from fit_mixAR.

fix If fix = "shift" shift parameters are not included in calculation of BIC. Default
is NULL, i.e. shift parameters are included.

mixAR_BIC 43

comp_loglik Should the loglikelihood be calculated? Default is TRUE. If FALSE and model is
output of fit_mixAR, then the loglikelihood is not recalculated.

index Discard the first 1:index observations. If missing, index is set to the largest
AR order.

x a list containing a combination of MixAR objects and/or output lists from fit_mixAR.

Details

mixAR_BIC calculates the BIC criterion of a given MixAR object with respect to a specified time
series.

If index is specified, it has to be at least equal to the largest autoregressive order. The function
calculates BIC on the last (index + 1):n data points.

BIC_comp calculates the value of BIC for the models listed in x with respect to the specified time
series y.

If the distributions of the components contain estimated parameters, then their number is included
in the number of parameters for the calculation of BIC.

Value

If comp_loglik = TRUE, the function calculates BIC based on the given model, data and index.

If comp_loglik = FALSE and model is output from fit_mixAR, it returns object vallogf from that
list.

Author(s)

Davide Ravagli

Examples

model1 <- new("MixARGaussian", prob = c(0.5, 0.5), scale = c(1, 2),
arcoef = list(-0.5, 1.1))

model2 <- new("MixARGaussian", prob = c(0.5, 0.3, 0.2), scale = c(1, 3, 8),
arcoef = list(c(-0.5, 0.5), 1, 0.4))

set.seed(123)
y <- mixAR_sim(model1, 400, c(0, 0, 0), nskip = 100)

mixAR_BIC(y, model1)

model_fit1 <- fit_mixAR(y, model1)
model_fit2 <- fit_mixAR(y, model2, crit = 1e-4)

mixAR_BIC(y, model_fit1)
mixAR_BIC(y, model_fit2)

BIC_comp(list(model1, model2, model_fit1, model_fit2), y)

mixAR_BIC(y, model_fit1, index = 20)
mixAR_BIC(y, model_fit2, index = 20)

44 mixAR_diag

mixAR_cond_probs The E-step of the EM algorithm for MixAR models

Description

Compute conditional probabilities for the E-step of the EM algorithm for MixAR models. Internal
function.

Usage

mixAR_cond_probs(model, y, indx = NULL)

Arguments

model an object from a sub-class of "MixAR".

y the time series, a numeric vector.

indx indices of elements for which to compute residuals.

Details

This is essentially the E-step for the MixAR models.

Value

the conditional probabilities, an object from class "MixComp".

mixAR_diag Diagnostic checks for mixture autoregressive models

Description

Carry out diagnostic checks and tests on fitted mixAR models.

Usage

S3 method for class 'MixAR'
tsdiag(object, gof.lag = NULL, y, ask = interactive(), ...,

plot = interactive(), std.resid = FALSE)

mixAR_diag(model, y, ...)

mixAR_diag 45

Arguments

model, object the model on which to perform the checks, an object from class MixAR. model
can also be the output list from fit_mixAR.

gof.lag Goodness of fit lag(s) for the Ljung-Box tests. Vector containing one or more
positive integers. max(gof.lag) is the maximal lag in the acf and pacf plots.
how many lags to compute for acf and pacf? The default is as that of lag.max
for acf.

y a time series, currently a numeric vector.

ask if TRUE, ask (using a menu) which plot to present. Otherwise just plot the se-
lected plots. ask is ignored if only one plot is selected with argument plot.

plot if TRUE, the default, produce diagnostic plots. If FALSE don’t produce plots.
Otherwise, a numeric vector of integers defining a subset of plots to consider,
see Details.

std.resid if TRUE standardise the ordinary residuals using the conditional standard devi-
ations. NOTE: the default is currently FALSE but it may soon be changed to
TRUE.

... for mixAR_diag, passed on to tsdiag.

Details

It is recommended to use tsdiag. mixAR_diag is essentially deprecated and is still here for com-
patibility with old code. Moreover, the tsdiag method is more flexible. The only advantage of
mixAR_diag is that it accepts also a list for argument model but this is equivalent to calling tsdiag
with object = model$model.

The function calculates several types of residuals, provides diagnostic plots for each of them, and
returns numerical results. The following choices are currently available:

1. ACF/PACF of residuals,

2. ACF/PACF of U_residuals,

3. ACF/PACF of tau_residuals,

4. ACF/Histogram of tau_residuals.

In interactive sessions the user is presented with a menu to select plot(s) from the available ones.
The choice can be restricted to a subset of them by giving argument plot a vector of integers. This
is most useful to select a particular plot, with somethinng like plot = 2 in the call to tsdiag. plot
is used as an index vector, so plot = -1 would remove the first item listed above from the offered
alternatives.

Transformations on the data are performed, as described in Smith (1985).

Four types of residuals are computed:

ordinary residuals difference (possibly scaled) between observed values and point predictions.

U_residuals/PIT residuals probability integral transform of the data using the CDF of the condi-
tional distributions implied by the fitted model. For a good model these should resemble an
IID sequence uniformly distributed on (0,1).

46 mixAR_diag

V_residuals set of transformed U_residuals with the quantile function of the standard normal
distribution (qnorm). For a good model these should resemble an IID sequence from N(0,1).

tau_residuals These residuals are calculated as the component specific residual e_tk divided by
its corresponding scale sigma_k, according to under which component y_t has largest den-
sity. Under correct model specification, these should be jointly Normal. Shapiro-Wilk test is
performed on this set of residual to assess the hypothesis.
For all types of residual results for the Ljung-Box test are provided. This test is particularly
relevant for the V- and tau-residuals.
Kolmogorov-Smirnov test is carried out for the U_residuals to assess the hypothesis of uni-
form distribution.
Shapiro-Wilk test of normality

is applied to V- and tau-residuals.

Value

returns invisibly a list with class "tsdiagMixAR", currently containing the following components:

residuals ordinary residuals,

U_residuals see Details,

V_residuals see Details,

tau_residuals see Details,

BIC the value of the BIC criterion, a number.

Each component, except BIC, is a list containing the residuals in component value, Ljung-Box test
in "Ljung-Box" and possibly other tests suitable for the corresponding type of residuals.

Note

This function should be used for diagnostic checking of MixARGaussian objects only.

Author(s)

Davide Ravagli and Georgi N. Boshnakov

References

Smith JQ (1985). “Diagnostic checks of non-standard time series models.” Journal of Forecasting,
4(3), 283-291. doi:10.1002/for.3980040305, https://onlinelibrary.wiley.com/doi/pdf/10.1002/for.3980040305,
https://onlinelibrary.wiley.com/doi/abs/10.1002/for.3980040305.

Wong CS, Li WK (2000). “On a mixture autoregressive model.” J. R. Stat. Soc., Ser. B, Stat.
Methodol., 62(1), 95-115.

See Also

mixAR_BIC, tsdiag

https://doi.org/10.1002/for.3980040305
https://onlinelibrary.wiley.com/doi/abs/10.1002/for.3980040305

mixAR_sim 47

Examples

model1 <- new("MixARGaussian", prob = c(0.5, 0.5), scale = c(1, 2),
arcoef = list(-0.5, 1.1))

set.seed(123)
y <- mixAR_sim(model1, 400, c(0,0,0), nskip = 100)

fit1 <- fit_mixAR(y, model1)
d <- tsdiag(fit1$model, c(10, 20, 50), y)
d
This will put each plot in a separate file (mydiag01.pdf, ..., mydiag04.pdf)
pdf("mydiag%02d.pdf", onefile = FALSE)
d <- tsdiag(fit1$model, c(10, 20, 50), y, ask = FALSE)
dev.off()

mixAR_sim Simulate from MixAR models

Description

Simulate from MixAR models

Usage

mixAR_sim(model, n, init, nskip = 100, flag = FALSE)

mixAny_sim(model, n, init, nskip=100, flag = FALSE,
theta, galpha0, galpha, gbeta)

Arguments

model model from which to simulate, an object inheriting from class MixAR.

init initial values, numeric vector.

n size of the simulated series.

nskip number of burn-in values, see Details.

flag if TRUE return also the regimes.

theta ma coef, a list.

galpha0 alpha0[k], k=1,...,g.

galpha garch alpha.

gbeta garch beta.

48 mixAR_switch

Details

mixAR_sim simulates a series of length nskip+n and returns the last n values.

mixAny_sim simulates from a MixAR model with GARCH innovations. mixAny_sim was a quick
fix for Shahadat and needs consolidation.

The vector init provides the initial values for t = ...,−1, 0. Its length must be at least equal to the
maximal AR order. If it is longer, only the last max(model@order) elements are used.

Value

a numeric vector of length n. If flag = TRUE it has attribute regimes containing z.

Examples

exampleModels$WL_ibm
simulate a continuation of BJ ibm data
ts1 <- mixAR_sim(exampleModels$WL_ibm, n = 30, init = c(346, 352, 357), nskip = 0)

a simulation based estimate of the 1-step predictive distribution
for the first date after the data.
s1 <- replicate(1000, mixAR_sim(exampleModels$WL_ibm, n = 1, init = c(346, 352, 357),

nskip = 0))
plot(density(s1))

load ibm data from BJ
data(ibmclose, package = "fma")

overlay the 'true' predictive density.
pdf1 <- mix_pdf(exampleModels$WL_ibm, xcond = as.numeric(fma::ibmclose))
curve(pdf1, add = TRUE, col = 'blue')

estimate of 5% quantile of predictive distribution
quantile(s1, 0.05)

Monte Carlo estimate of "expected shortfall"
(but the data has not been converted into returns...)
mean(s1[s1 <= quantile(s1, 0.05)])

mixAR_switch Relabel the components of a MixAR model

Description

Relabel the components of a MixAR model.

Usage

mixAR_switch(model, perm)
mixAR_permute(model, perm)

MixComp-class 49

Arguments

model a MixAR model

perm a permutation for relabeling

Details

If the permutation is the identity permutation the model is returned as is. Otherwise the order of the
components is changed according to perm. Basically, perm is used as index, e.g. prob[perm], etc.

Note

Currently the function only reorders the "usual" components. Subclasses of "MixAR" may contain
other parameters (e.g. different error distributions). So this function may not be appropriate for
them.

MixComp-class Class "MixComp" — manipulation of MixAR time series

Description

Class "MixComp" represents components of mixture autoregressive time series and their transfor-
mations obtained by arithmetic and related operations. Methods are provided to allow convenient
computation with such time series.

Objects from the Class

Objects can be created by calls of the form new("MixComp", ...). It is more usual however to
obtain such objects initially from functions such as mix_ek. Methods are defined to allow for
convenient and intuitive further manipulation of such objects.

Internally, an object of class MixComp is a matrix with one column for each component. However,
methods for arithmetic operations involving MixComp objects are defined to perform natural oper-
ations for mixture objects. For example, multiplication by vectors is commutative and “does the
right thing”.

Slots

m: Object of class "matrix" with one column correponding to each component of the mixture AR
model.

Methods

Arithmetic operations involving MixComp objects are defined to allow for convenient execution of
computations for mixture autoregressive models, see class "MixComp".

- signature(e1 = "MixComp", e2 = "missing"): unary minus for "MixComp" objects.

50 MixComp-class

- signature(e1 = "numeric", e2 = "MixComp"):
If e2 is thought of as a matrix, m, then the number of elements of e1 must be the same as
the number of rows of m and each column of m is subtracted from e1, see also "mix_ek",
"mix_hatk".
As a special case, if m has only one row, then it is subtracted from each element of e1, i.e. that
row is replicated to obtain a matrix with as many rows as the length of e1 and then subtracted
from e1 as above.
The result is a MixComp object.

- signature(e1 = "MixComp", e2 = "numeric"): This is analogous to the above method. (FIXME:
the code of this function does not deal with the special case as in the above method. Is this an
omission or I have done it on purpose?)

%of% signature(e1 = "function", e2 = "MixComp"): This applies the function e1 to each el-
ement of e2. Together with the arithmetic operations this allows for easy computation with
MixComp objects (e.g. pdfs, likelihoods).

%of% signature(e1 = "character", e2 = "MixComp"):

%of% signature(e1 = "list", e2 = "MixComp"): If e1 is of length one it specifies a function to
be applied to each element of e2, otherwise it is a list of functions, such that the ith function
is applied to the ith column of e2@m.

* signature(e1 = "MixComp", e2 = "MixComp"): ...

* signature(e1 = "MixComp", e2 = "numeric"): see the following.

* signature(e1 = "numeric", e2 = "MixComp"): “Column” i of the MixComp object is multiplied
by the ith element of the numeric vector, i.e. each “row” of the MixComp object is multiplied
by the vector (or, the vector is replicated to a matrix to be multiplied by the MixComp object).

* signature(e1 = "function", e2 = "MixComp"): Multiplying a function by a MixComp object
actually applies the function to each element of the object. This is a misuse of methods, prefer
operator %of% which does the same.

* signature(e1 = "character", e2 = "MixComp"): The first argument is a name of a function
which is applied to each element of the MixComp object. This is a misuse of methods, see
operator %of% which does the same.

/ signature(e1 = "MixComp", e2 = "numeric"):

/ signature(e1 = "numeric", e2 = "MixComp"): Division works analogously to "*".

^ signature(e1 = "MixComp", e2 = "numeric"): If k is a scalar, raise each element of e1@m to
power k.
(For consistency this operation should have the semantics of "*" and "/" but this operator
probably makes sense only for scalar ’e2’, where the semantics doesn’t matter. So, don’t
bother for now.)

+ signature(e1 = "numeric", e2 = "MixComp"):

+ signature(e1 = "MixComp", e2 = "numeric"): Addition involving MixComp objects works anal-
ogously to subtraction.

inner signature(x = "MixComp", y = "missing", star = "missing", plus = "missing"): With
one argument inner computes the sum of the columns of the argument. This is conceptually
equivalent to y being a vector of ones.

inner signature(x = "MixComp", y = "numeric", star = "missing", plus = "missing"):

MixComp-class 51

inner signature(x = "numeric", y = "MixComp", star = "missing", plus = "missing"): The
number of elements of the numeric argument should be equal to the number of rows of the
MixComp object. Effectively, computes the inner product of the two arguments. The order of
the arguments does not matter.
Returns a numeric vector.

inner signature(x = "MixComp", y = "numeric", star = "ANY", plus = "ANY"): Computes a gen-
eralised inner product of x with y using the specified functions in place of the usual "*" and
"+" operations. The defaults for star and + are equivalent to multiplication and addition,
respectively.
Note that "+" is a binary operation (not n-ary) in R. So technically the correct way to specify
the default operation here is "sum" or sum. Since it is easy to make this mistake, if plus ==
"+", it is replaced by "sum". (In fact, plus is given a single argument, the vector of values
to work on. Since "+" works as a unary operator on one argument, it would give surprising
results if left as is.)

inner signature(x = "MixComp", y = "numeric", star = "ANY", plus = "missing"): This is a
more efficient implementation for the case when plus = sum.

mix_ncomp signature(x = "MixComp"): Number of components.

signature(x = "MixComp") A "MixComp" object is essentially a matrix. This method gives the
dimension of the underlying matrix. This method indirectly ensures that nrow() and ncol()
work naturally for "MixComp" objects.

Author(s)

Georgi N. Boshnakov

Examples

dim, nrow, ncol
a <- new("MixComp", m = matrix(c(1:7, 11:17, 21:27), ncol = 3))
a
dim(a)
nrow(a)
ncol(a)
mix_ncomp(a)

-a
a - 1:7
1:7 + a
2*a

b <- new("MixComp", m = matrix(rnorm(18), ncol = 3))

apply a function to the columns of a MixComp object
pnorm %of% b

apply a separate function to to each column
flist <- list(function(x) pnorm(x),

function(x) pt(x, df = 5),

52 mixFilter

function(x) pt(x, df = 4))
flist %of% b

mixFilter Filter time series with MixAR filters

Description

Filter time series with MixAR filters, a generic function with no default method (currently).

Usage

mixFilter(x, coef, index, shift = 0, residual = FALSE, scale = 1)

Arguments

x time series

coef the filter coefficients

index indices for which to calculate the filtered values.

shift optional shifts (intercept) terms.

residual If FALSE (default) calculate “predictions”, if TRUE calculate “residuals”.

scale optional scale factor(s), makes sense only when residual=TRUE, corresponds
to scale in the specification of a MixAR model.

Value

a MixComp object

Methods

signature(x = "ANY", coef = "ANY", index = "ANY") This method simply prints an error mes-
sage and stops.

signature(x = "numeric", coef = "raggedCoef", index = "numeric")

Author(s)

Georgi N. Boshnakov

See Also

raghat1 mix_ek mix_hatk

mixgenMstep 53

mixgenMstep M-step for models from class MixARgen

Description

M-step for models from class MixARgen. This function is for use by other functions.

Usage

mixgenMstep(y, tau, model, index, fix = NULL, comp_sigma = FALSE,
method = "BBsolve", maxit = 100, trace = FALSE,
lessverbose = TRUE, ...)

Arguments

y time series, a numeric vector.

tau conditional probabilities, an object of class "MixComp".

model the current model, an object from a subclass of class "MixAR".

index indices of observations for which to compute residuals, a vector of positive in-
tegers, see ’Details’.

method optimisation or equation solving method for package BB

... arguments to pass on to optimisation functions, not thought over yet. Do not use
until this notice is removed.

comp_sigma If TRUE optimise the scale parameters using univariate optimisation. (note:
does not work with argument ’fix’ yet.)

fix specify parameters to be held fixed during optimisation, see ’Details’.

maxit maximal number of iterations for BB optimisers and solvers. Meant mainly for
testing.

trace if TRUE, BB optimisers and solvers will print information about their proceed-
ings. Meant mainly for testing.

lessverbose if TRUE, print a dot instead of more verbose information.

Details

mixgenMstep is an implementation of the M-step of the EM algorithm for mixture autoregressive
models specified by objects of class "MixARgen". The function was build and modified incremen-
tally with the main goal of providing flexibility. Speed will be addressed later.

By default optimisation is done with respect to all parameters. Argument fix may be a list with
elements "prob", "shift", "scale" and "arcoef". These elements should be logical vectors containing
TRUE in the positions of the fixed parameters. Elements with no fixed parameters may be omit-
ted. (Currently the "prob" element is ignored, i.e. it is not possible to fix any of the component
probabilities.)

If fix = "shift" the shift parameters are kept fixed. This is equivalent to fix = list(shift =
rep(TRUE,g)).

54 mixMstep

The parameters (if any) of the distributions of the error components are estimated by default. Cur-
rently the above method cannot be used to fix some of them. This can be achieved however by
modifying the distribution part of the model since that incorporates information about the parame-
ters and whether they are fixed or not.

See Also

fit_mixAR and mixARgenemFixedPoint which are meant to be called by users.

mixMstep Internal functions for estimation of MixAR models with Gaussian com-
ponents

Description

Internal functions for EM estimation of MixAR models with Gaussian components: sums of prod-
ucts and crossproducts; M-step for MixAR estimation; estimation of autoregressive part of the
model.

Usage

tauCorrelate(y, tau, order)
tau2arcoef(y, tau, order, est_shift = TRUE)
mixMstep(y, tau, order, index, est_shift = TRUE)

Arguments

y time series.

tau conditional probabilties for the observations to belong to each of the compo-
nents, a MixComp object.

order order of the MixAR model, numeric vector of length the number of mixture
components.

index indices of the observations to include in the likelihood calculations, typically
(p+1):n, where p is max(order) and n=length(y).

est_shift if TRUE include shifts (intercepts) in the AR components, otherwise set them to
zero.

Details

mixMstep performs an M-step for estimation of MixAR models with Gaussian components.

tauCorrelate computes crossproducts needed for EM estimation of MixAR models with Gaussian
components.

tau2arcoef computes the AR coefficients by solving Yule-Walker-type equations for each compo-
nent.

mixSARfit 55

Value

For mixMstep, a MixAR model, an object of class MixARGaussian.

For tauCorrelate, a named list with the following components:

Stau

Stauy

Stauyy

For tau2arcoef, a list with two components:

shift the shift (intercept) terms, a numeric vector

arcoef the AR coefficients as a list, whose i-th component contains the coefficients for
component i (as a numeric vector)

mixSARfit Fit mixture autoregressive models with seasonal AR parameters

Description

Provides estimation via EM-Algorithm for mixture autoregressive models including seasonal AR
parameters.

Usage

mixSARfit(y, model, est_shift = FALSE, tol = 10^-14)

Arguments

y a time series (currently a numeric vector).

model an object of class "MixAR" including seasonal components.

est_shift if missing or FALSE, fix the intercepts to zero, otherwise estimate them.

tol threshold for stopping criterion.

Details

This function only works for "MixAR" objects in which slot arcoef is of class "raggedCoefS".

Value

A list of 2:

model an object of class "MixAR". The estimated model.

vallogf the value of the loglikelihood function for the returned model.

Author(s)

Davide Ravagli and Georgi N. Boshnakov

56 MixVAR-class

Examples

ar1 <- list(c(0.5, -0.5), c(1.1, 0, -0.5))
ar12 <- list(0, c(-0.3, 0.1))
s = 12

rag <- new("raggedCoefS", a = ar1, as = ar12, s = s)

model <- new("MixARGaussian", prob = exampleModels$WL_A@prob, # c(0.5, 0.5)
scale = exampleModels$WL_A@scale, # c(5, 1)
arcoef = rag)

set.seed(1234)
y <- mixAR_sim(model, n = 100, init = rep(0, 24))

mixSARfit(y, model)
fix the intercepts to zero
mixSARfit(y, model, est_shift = FALSE, tol = 10e-4)

MixVAR-class Class "MixVAR" — mixture vector autoregressive models

Description

Mixture vector autoregressive models

Objects from the Class

A virtual Class: No objects may be created from it.

Derived classes add distribution properties, e.g. use class "MixVARGaussian" for MixVAR models
with Gaussian error components.

Slots

prob: the mixing probabilities, an object of class "numeric"

order: Object of class "numeric" ~~

shift: Object of class "matrix" ~~

vcov: Object of class "array" ~~

arcoef: Object of class "raggedCoefV" ~~

Methods

fit_mixVAR signature(x = "ANY", model = "MixAR"): ...

Author(s)

Davide Ravagli

mixVARfit 57

See Also

class "MixVARGaussian"

mixVARfit Fit mixture vector autoregressive models

Description

Provides EM-estimation of mixture autoregressive models for multivariate time series

Usage

mixVARfit(y, model, fix = FALSE, tol = 10^-6, verbose = FALSE)

Arguments

y a data matrix.

model an object of class "MixVAR" with initial values of parameter for EM estimation.

tol Threshold for convergence criterion.

fix if TRUE, fix the shift parameters.

verbose if TRUE print information during the optimisation.

Details

Estimation is done under the assumption of multivariate Gaussian innovations.

Value

An object of class MixVARGaussian with EM estimates of model parameters.

Author(s)

Davide Ravagli

References

Fong PW, Li WK, Yau CW, Wong CS (2007). “On a Mixture Vector Autoregressive Model.”
The Canadian Journal of Statistics / La Revue Canadienne de Statistique, 35(1), 135–150. ISSN
03195724, doi:10.1002/cjs.5550350112.

See Also

fit_mixVAR-methods for examples

https://doi.org/10.1002/cjs.5550350112

58 MixVARGaussian-class

MixVARGaussian-class MixVAR models with multivariate Gaussian noise components

Description

Class MixVARGaussian represents MixAR models with multivariate Gaussian noise components.

Objects from the Class

Objects can be created by calls of the form new("MixVARGaussian", ...), giving the elements of
the model as named arguments, see the examples below.

arcoef contains the AR coefficients, one numeric array for each mixture component. It can be
given as a "raggedCoefV" object or as a list of numeric arrays.

The AR order of the model is inferred from arcoef argument. If argument order is given, it is
checked for consistency with arcoef. The shift slot defaults to a matrix of zeroes and the vcov
slot to an array of identity matrices, one for each component.

The distribution of the noise components is standard multivariate Gaussian, N(0,1).

Slots

All slots except arcoef are numeric vectors of length equal to the number of components in the
model.

prob: probabilities of the mixture components,

order: AR orders of the components,

shift: the shift (intercept) terms of the AR components,

vcov: covariance matrices of the noise terms of the AR components,

arcoef: The AR components, object of class "raggedCoefV".

Extends

Class "MixAR", directly.

Methods

fit_mixAR signature(x = "ANY", model = "MixARGaussian"): ...

Author(s)

Davide Ravagli

See Also

class "MixAR"

mixVAR_sim 59

Examples

showClass("MixVARGaussian")

Create array of covariance matrices
Sigma1 <- cbind(c(0.0013, 0.0011), c(0.0011, 0.0012))
Sigma2 <- cbind(c(0.0072, 0.0047), c(0.0047, 0.0039))
Sigma <- array(c(Sigma1, Sigma2), dim=c(2,2,2))

Create list of AR coefficients
AR <- list()
AR[[1]] <- array(c(0.0973, -0.0499, 0.2927, 0.4256, ## VAR(2;4)

-0.0429, 0.0229, -0.1515, -0.1795,
-0.0837, -0.1060, -0.1530, 0.1947,
-0.1690, -0.0903, 0.1959, 0.0955), dim=c(2,2,4))

AR[[2]] <- array(c(0.3243, 0.2648, 0.4956, 0.2870, ## VAR(2;3)
-0.1488, 0.0454, -0.0593, -0.3629,
0.1314, 0.0274, 0.0637, 0.0485), dim=c(2,2,3))

Create vector of mixing weights
prob <- c(0.6376, 0.3624)

Create matrix of shift parameters
shift <- cbind(c(0.0044, 0.0020), c(-0.0039, -0.0014))

Build "MixVARGaussian" model
new("MixVARGaussian", prob=prob, vcov=Sigma, arcoef=AR, shift=shift)

mixVAR_sim Simulate from multivariate MixAR models

Description

Simulate data from multivariate MixAR models under the assumptions of multivariate Gaussian
innovarion

Usage

mixVAR_sim(model, n, init, nskip = 100, flag = FALSE)

Arguments

model model from which to simulate, an object inheriting from class MixVAR.

n size of simulated multivariate series.

init initial values, a numeric matrix. If missing, a matrix of 0 values is generated.

nskip number of burn-in values.

flag if TRUE returns also the regimes.

60 mix_ek

Details

mixVAR_sim simulates a series of length nskip + n and returns the last n values. init provides
initial values for the algorithm. Each row is considered as a time point. The number of rows must
be at least equal to the maximal AR order.

Value

a numeric matrix with n rows.

Author(s)

Davide Ravagli

See Also

mixAR_sim

Examples

AR <- list()
AR[[1]] <- array(c(0.5,-0.3,-0.6,0,0,0.5,0.4,0.5,-0.3), dim = c(3,3,1))
AR[[2]] <- array(c(-0.5,0.3,0,1,0,-0.5,-0.4,-0.2, 0.5), dim = c(3,3,1))

prob <- c(0.75, 0.25)
shift <- cbind(c(0,0,0), c(0,0,0))

Sigma1 <- cbind(c(1, 0.5, -0.4), c(0.5, 2, 0.8), c(-0.4, 0.8, 4))
Sigma2 <- cbind(c(1,0.2, 0), c(0.2, 2, -0.15), c(0, -0.15, 4))
Sigma <- array(c(Sigma1, Sigma2), dim = c(3,3,2))

m <- new("MixVARGaussian", prob=prob, vcov=Sigma, arcoef=AR, shift=shift)
mixVAR_sim(m, n=500, init=matrix(rep(0,3), ncol=3), nskip=100, flag=FALSE)

mix_ek Function and methods to compute component residuals for MixAR
models

Description

Compute component residuals for MixAR models.

Usage

mix_ek(model, x, index, xcond, scale)

mix_ek 61

Arguments

model a model.

x time series.

index a vector of positive integer specifying the indices for which to compute the
residuls, has a natural default.

xcond the past values needed for the conditional distribution, a numeric vector of length
at least the maximal AR order of the components.

scale logical or missing, if TRUE standardise the residuals.

Details

mix_ek computes component residuals from MixAR models.

It is highly desirable to use it along with mix_hatk and the underlying function mixFilter. Doing
this ensures transparent code and easy maintenance. Also, more efficient implementation can be
introduced without changing other code.

Methods

signature(model = "MixAR", x = "numeric", index = "missing", xcond = "numeric", scale = "logical")

signature(model = "MixAR", x = "numeric", index = "missing", xcond = "numeric", scale = "missing")

signature(model = "MixAR", x = "numeric", index = "numeric", xcond = "missing", scale = "logical")

signature(model = "MixAR", x = "numeric", index = "numeric", xcond = "missing", scale = "missing")

Author(s)

Georgi N. Boshnakov

See Also

mixFilter which is used by mix_ek to do the job, MixComp-class for easy manipulation of the
returned object.

class "MixAR"

62 mix_moment

mix_hatk Compute component predictions for MixAR models

Description

Function and methods to compute component predictions for MixAR models

Usage

mix_hatk(model, x, index, xcond)

Arguments

model a model.
x time series.
index a vector of positive integers specifying the indices for which to compute the

residuals, has a natural default.
xcond the past values needed for the conditional distribution, a numeric vector of length

at least the maximal AR order of the components.

Methods

signature(model = "MixAR", x = "numeric", index = "numeric", xcond = "missing")

Author(s)

Georgi N. Boshnakov

See Also

class "MixAR"

mix_moment Conditional moments of MixAR models

Description

Conditional moments of MixAR models.

Usage

mix_location(model, x, index, xcond)
mix_variance(model, x, index, xcond)
mix_central_moment(model, x, index, xcond, k)
mix_moment(model, x, index, xcond, k)
mix_kurtosis(...)
mix_ekurtosis(...)

mix_moment 63

Arguments

model a MixAR object.

x a time series.

index a vector of indices in x for which to compute the requested property. If missing,
the computation is done for all indices greater than max(model@order).

xcond a time series, the point prediction is computed for the first value after the end of
the time series. Only the last max(model@order) values in xcond are used.

k a positive integer specifying the moment to compute.

... passed on to mix_central_moment.

Details

These functions compute conditional moments and related quantities.

kurtosis and ekurtosis compute conditional kurtosis and excess kurtosis, respectively. Effec-
tively, they have the same parameters as mix_central_moment, since they pass "..." to it along
with k = 4. It is an error to supply argument k to the kurtosis functions.

Value

when called with one argument (model), a function with argument xcond; otherwise if xcond is not
missing, a single numeric value; otherwise a vector of length length(index).

Note

I wrote the above description recently from reading six years old code, it may need further verifica-
tion.

Author(s)

Georgi N. Boshnakov

References

Boshnakov GN (2009). “Analytic expressions for predictive distributions in mixture autoregressive
models.” Stat. Probab. Lett., 79(15), 1704-1709. doi:10.1016/j.spl.2009.04.009.

See Also

mix_pdf, mix_cdf, mix_qf for the predictive distributions (pdf, cdf, quantiles);

Examples

data(ibmclose, package = "fma") # `ibmclose'
ibmclose <- as.numeric(fma::ibmclose)
length(ibmclose) # 369
max(exampleModels$WL_ibm@order) # 2

compute point predictions for t = 3,...,369

https://doi.org/10.1016/j.spl.2009.04.009

64 mix_moment

pred <- mix_location(exampleModels$WL_ibm, ibmclose)
plot(pred)
compute one-step point predictions for t = 360,...369
mix_location(exampleModels$WL_ibm, ibmclose, index = 369 - 9:0)

f <- mix_location(exampleModels$WL_ibm) # a function
predict the value after the last
f(ibmclose)

a different way to compute one-step point predictions for t = 360,...369
sapply(369 - 10:1, function(k) f(ibmclose[1:k]))

the results are the same, but notice that xcond gives past values
while index above specifies the times for which to compute the predictions.
identical(sapply(369 - 10:1, function(k) f(ibmclose[1:k])),

mix_location(exampleModels$WL_ibm, ibmclose, index = 369 - 9:0))

conditional variance
f <- mix_variance(exampleModels$WL_ibm) # a function
predict the value after the last
f(ibmclose)

a different way to compute one-step point predictions for t = 360,...369
sapply(369 - 10:1, function(k) f(ibmclose[1:k]))

the results are the same, but notice that xcond gives past values
while index above specifies the times for which to compute the predictions.
identical(sapply(369 - 10:1, function(k) f(ibmclose[1:k])),

mix_variance(exampleModels$WL_ibm, ibmclose, index = 369 - 9:0))

interesting example
bimodal distribution, low kurtosis, 4th moment not much larger than 2nd
moWL <- exampleModels$WL_ibm

mix_location(moWL,xcond = c(500,450))
mix_kurtosis(moWL,xcond = c(500,450))

f1pdf <- mix_pdf(moWL,xcond = c(500,450))
f1cdf <- mix_cdf(moWL,xcond = c(500,450))
gbutils::plotpdf(f1pdf,cdf=f1cdf)
gbutils::plotpdf(f1cdf,cdf=f1cdf)
f1cdf(c(400,480))

mix_variance(moWL,xcond = c(500,450))
mix_central_moment(moWL,xcond = c(500,450), k=2)

sqrt(mix_variance(moWL,xcond = c(500,450)))
sqrt(mix_central_moment(moWL,xcond = c(500,450), k=2))

mix_ncomp-methods 65

mix_ncomp-methods Number of rows or columns of a MixComp object

Description

Function and methods to get the number of component in a mixture object. For "MixComp" objects
this is equivalent to ncol.

Usage

mix_ncomp(x)

Arguments

x an object, such as "MixComp" or "MixAR".

Value

a number

Methods

signature(x = "MixAR")

signature(x = "MixComp")

Author(s)

Georgi N. Boshnakov

See Also

MixComp-class, MixAR-class

mix_pdf-methods Conditional pdf’s and cdf’s of MixAR models

Description

Gives conditional probability densities and distribution functions of mixture autoregressive models.

66 mix_qf-methods

Methods

mix_pdf gives a probability density, mix_cdf a distribution function. If argument x is supplied, the
functions are evaluated for the specified values of x, otherwise function objects are returned and can
be used for further computations, eg for graphs.

mix_pdf and mix_cdf have methods with the following signatures.

signature(model = "MixARGaussian", x = "missing", index = "missing", xcond = "numeric")
Return (as a function of one argument) the conditional density (respectively cdf), f(x|xcond),
of Xt+1 given the past values xcond. The values in xcond are in natural time order, e.g. the
last value in xcond is xt. xcond must contain enough values for the computation of the con-
ditional density (cdf) but if more are given, only the necessary ones are used.

signature(model = "MixARGaussian", x = "numeric", index = "missing", xcond = "numeric")
Compute the conditional density (respectively cdf) at the values given by x.

signature(model = "MixARGaussian", x = "numeric", index = "numeric", xcond = "missing")
Compute conditional densities (respectively cdf) for times specified in index. For each t ∈
index the past values needed for the computation of the pdf (cdf) are ...,x[t-2],x[t-1].

signature(model = "MixARgen", x = "missing", index = "missing", xcond = "numeric")

signature(model = "MixARgen", x = "numeric", index = "missing", xcond = "numeric")

signature(model = "MixARgen", x = "numeric", index = "numeric", xcond = "missing")

Author(s)

Georgi N. Boshnakov

See Also

mix_moment for examples and computation of summary statistics of the predictive distributions

mix_qf for computation of quantiles.

mix_qf-methods Conditional quantile functions of MixAR models

Description

Gives conditional quantile functions of mixture autoregressive models.

Usage

mix_qf(model, p, x, index, xcond)

mix_se-methods 67

Arguments

model mixAR model.

p vector of probabilities.

x time series.

index vector of positive integers.

xcond the past values needed for the conditional distribution, a numeric vector of length
at least the maximal AR order of the components.

Value

depending on the arguments, a function for computing quantiles or a numeric vector representing
quantiles, see sections ’Details’ and ’Methods

Methods

signature(model = "MixARGaussian", p = "missing", x = "missing", index = "missing", xcond = "numeric")

signature(model = "MixARGaussian", p = "numeric", x = "missing", index = "missing", xcond = "numeric")

signature(model = "MixARGaussian", p = "numeric", x = "numeric", index = "numeric", xcond = "missing")

Author(s)

Georgi N. Boshnakov

See Also

mix_pdf, mix_cdf;

mix_moment for examples

mix_se-methods Compute standard errors of estimates of MixAR models

Description

Compute standard errors of estimates of MixAR models.

Usage

mix_se(x, model, fix_shift)

68 mix_se-methods

Arguments

x time series.

model MixAR model, an object inheriting from class “MixAR”.

fix_shift logical. Should the shift paramters be fixed? Default is FALSE.

Details

For formulas used in the computation, see Wong (1998).

Value

a list with components:

standard_errors

Standard error of parameter estimates,
covariance_matrix

The covariance matrix, obtained as inverse of the information matrix,
Complete_Information

Complete information matrix,
Missing_Information

Missing information matrix.

Methods

signature(x = "ANY", model = "list")

signature(x = "ANY", model = "MixAR")

signature(x = "ANY", model = "MixARGaussian")

Author(s)

Davide Ravagli

References

Wong CS (1998). Statistical inference for some nonlinear time series models. Ph.D. thesis, Univer-
sity of Hong Kong, Hong Kong.

Examples

Example with IBM data

data(ibmclose, package = "fma")

moWLprob <- exampleModels$WL_ibm@prob # 2019-12-15; was: c(0.5339,0.4176,0.0385)
moWLsigma <- exampleModels$WL_ibm@scale # c(4.8227,6.0082,18.1716)
moWLar <- list(-0.3208, 0.6711,0) # @Davide - is this from some model?

moWLibm <- new("MixARGaussian", prob = moWLprob, scale = moWLsigma, arcoef = moWLar)

multiStep_dist-methods 69

IBM <- diff(fma::ibmclose)
mix_se(as.numeric(IBM), moWLibm, fix_shift = TRUE)$'standard_errors'

multiStep_dist-methods

Multi-step predictions for MixAR models

Description

Multi-step predictions for MixAR models.

Usage

multiStep_dist(model, maxh, N, xcond, ...)

Arguments

model a MixAR model.

maxh maximal horizon, a positive integer.

N an integer specifying the number of simulation samples to use, see ’Details. This
argument is used only by simulation based methods.

xcond the past values needed for the conditional distribution, a numeric vector of length
at least the maximal AR order of the components.

... used only in some methods, see the details for the individual methods.

Details

The function currently implements two methods: the exact method due to Boshnakov (2009) and a
simulation method described by (Wong and Li 2000) for Gaussian MixAR models but valid more
generally.

The simulation method is available for any MixAR model, while the exact method is currently
implemented only for models with Gaussian components ("MixARGaussian" class).

multiStep_dist returns a function which can be used to obtain various properties of the predictive
distribution for lags up to maxh.

If argument N is missing the exact method is tried. Currently an error will result if the exact method
is not implemented for model.

If argument N is given it must be a scalar numeric value, the number of simulations to be performed
to construct an approximation for the predictive distributions.

The simulation is done by multiStep_dist. The properties obtained later from the function re-
turned by multiStep_dist use the samples generated by the call to multiStep_dist. To do a
simulation with different parameters (e.g., with larger N) call multiStep_dist again.

70 multiStep_dist-methods

Details on the returned function:
If xcond is missing multiStep_dist returns a function with arguments h, what and xcond. If
xcond is supplied, then it is fixed to that value and the arguments of the returned function are h,
what and '...'. The dots argument is currently used in the case of the simulation method, see
below.
Let f be the function returned by multiStep_dist. Argument h is the required prediction hori-
zon and can be a number in the interval [1,maxh]. Argument what is the required property of
the predictive distribution for lag h. If what is a function, it is applied to the simulated sample
for the requested horizon (currently available only for the simulation method). If what is a char-
acter string, the corresponding property of the predictive distribution for horizon h is returned.
Currently possible values for what are:

"pdf" the probability density function.
"cdf" the cumulative distribution function.
"location" the location (conditional mean).
"variance" the conditional variance, a.k.a (squared) volatility.
"sd" the conditional standard deviation, a.k.a volatility.
"skewness" the conditional skewness.
"kurtosis" the conditional kurtosis.

Note that what = "pdf" and what = "cdf" return functions even in the simulation case. For "pdf"
the function is constructed using density and the "..." arguments passed to f will be passed on
to density if finer control is needed.
If what is none of the above, the raw object is returned currently (but this may change).

Value

a function as described in sections ‘Details’ and ‘Methods’

Methods

The Details section gives a rather detailed description of the function, so the descriptions below are
brief.

signature(model = "MixAR", maxh = "numeric", N = "numeric", xcond = "numeric") Non-missing
N requests the simulation method. The predictive distribution is approximated by simulating
N of future paths up to horizon maxh and using a non-parametric estimate. Arguments "..."
are passed to density to allow finer control.

signature(model = "MixARGaussian", maxh = "numeric", N = "missing", xcond = "missing")
Computes the predictive distribution using the exact method. Returns a function with argu-
ments h, what and xcond.

signature(model = "MixARGaussian", maxh = "numeric", N = "missing", xcond = "ANY") Computes
the predictive distribution using the exact method. Returns a function with arguments h and
what. (i.e., xcond is fixed to the supplied argument xcond).

Author(s)

Georgi N. Boshnakov

multiStep_dist-methods 71

References

Boshnakov GN (2009). “Analytic expressions for predictive distributions in mixture autoregressive
models.” Stat. Probab. Lett., 79(15), 1704-1709. doi:10.1016/j.spl.2009.04.009.

Wong CS, Li WK (2000). “On a mixture autoregressive model.” J. R. Stat. Soc., Ser. B, Stat.
Methodol., 62(1), 95-115.

See Also

predict_coef

Examples

exact method, without xcond
dist <- multiStep_dist(exampleModels$WL_ibm, maxh = 3)

tfpdf <- dist(3, "pdf", xcond = c(560, 600)) # xcond is argument to 'dist' here
tfcdf <- dist(3, "cdf", xcond = c(560, 600))
plot the pdf (gbutils::plotpdf determines suitable range automatically)
gbutils::plotpdf(tfpdf, cdf = tfcdf)

args(dist(3, "pdf", xcond = c(500, 600))) # x

use a simulation method with N = 1000
tf <- multiStep_dist(exampleModels$WL_ibm, maxh = 3, N = 1000, xcond = c(560, 600))
args(tf) # (h, what, ...)

the exact method may also be used with fixed xcond:
tfe <- multiStep_dist(exampleModels$WL_ibm, maxh = 3, xcond = c(560, 600))

get pdf and cdf for horizon 3
tfepdf <- tfe(3, "pdf")
tfecdf <- tfe(3, "cdf")
plot the pdf
gbutils::plotpdf(tfepdf, cdf = tfecdf)

tf(3, "location")

tf(1, "location")
mix_location(exampleModels$WL_ibm, xcond = c(560, 600))

larger simulation gives better approximation, in general
tf <- multiStep_dist(exampleModels$WL_ibm, maxh = 3, N = 10000, xcond = c(560, 600))
tf(1, "location")

tf1000pdf <- tf(3, "pdf")
tf1000cdf <- tf(3, "cdf")
gbutils::plotpdf(tf1000pdf, cdf = tf1000cdf)

plot the exact and simulated pdf's together for comparison
gbutils::plotpdf(tfepdf, cdf = tfecdf)
curve(tf1000pdf, add = TRUE, col = "red")

https://doi.org/10.1016/j.spl.2009.04.009

72 noise_dist

get the raw data
tfs <- tf(1, "sampled")
apply(tfs, 2, mean) # location for lags from 1 to maxh (here 3)

tf(1, "location")
tf(1, "variance")
tf(1, "sd")
mix_variance(exampleModels$WL_ibm, xcond = c(560, 600))
sqrt(mix_variance(exampleModels$WL_ibm, xcond = c(560, 600)))

mix_kurtosis(exampleModels$WL_ibm, xcond = c(359, 200))
mix_kurtosis(exampleModels$WL_ibm, xcond = c(359, 400))

noise_dist Internal mixAR functions

Description

Functions for the distributions of the components of MixAR models

Usage

get_edist(model)
noise_dist(model, what, expand = FALSE)
noise_rand(model, expand = FALSE)
noise_params(model)
set_noise_params(model, nu)

Arguments

model a model.

what the property, a character string.

expand if TRUE, expand the list to length equal to the number of components, see De-
tails.

nu degrees of freedom.

Details

get_edist gives the distributions of the noise components of model. noise_dist gives property
what of the noise distribution. noise_rand gives a list of functions for simulation from the compo-
nent distributions.

In each case, the list contains one element for each component but if it is of length one, then the
only element is common for all components. To force a complete list even in this case, use expand
= TRUE.

noise_params gives the parameters of the model as a numeric vector.

noise_dist-methods 73

The distribution is specified as a list. Element "dist" contain the distribution. Element "generator"
is a function that generates a distribution like the one specified. If "dist" is absent or NULL, the
generator is called to generate a distribution object.

Initially the distribution itself was used for slot dist. For compatibility with old code using that
format, this is still supported.

See Also

fdist_stdnorm, fdist_stdt, fn_stdt.

noise_dist-methods Methods for function noise_dist in package mixAR

Description

Methods for function noise_dist in package mixAR

Methods

signature(model = "MixAR")

signature(model = "MixARGaussian")

signature(model = "MixARgen")

See Also

noise_dist

noise_params-methods Methods for function noise_params in package mixAR

Description

Methods for function noise_params in package mixAR

Methods

signature(model = "MixAR")

signature(model = "MixARgen")

74 parameters

noise_rand-methods Methods for function noise_rand in package mixAR

Description

Methods for function noise_rand in package mixAR

Methods

signature(model = "MixAR")

signature(model = "MixARGaussian")

signature(model = "MixARgen")

parameters Set or extract the parameters of MixAR objects

Description

Set or extract the parameters of MixAR objects.

Usage

parameters(model, namesflag = FALSE, drop = character(0))

parameters(model) <- value
S4 replacement method for signature 'MixAR'
parameters(model) <- value
S4 replacement method for signature 'ANY'
parameters(model) <- value

Arguments

model a model.
namesflag if TRUE, generate names.
drop names of parameters not to include in the returned value, a character vector. The

default is to return all parameters, see Details.
value values of the parameters, numeric.

Details

This is a generic function. The dispatch is on argument model. The default calls coef.

parameters extracts the parameters of a MixAR object. It returns a numeric vector. If namesflag
is TRUE the returned vector is named, so that the parameters can be referred to by names. Argument
drop is a character vector giving names of parameters not to be included in the returned value.

This function can be useful for setting parameters from optimisation routines.

set_parameters is deprecated, use parameters(model) <- value instead.

percent_of 75

Value

a vector of parameters, maybe with names.

Methods

signature(model = "ANY")

signature(model = "MixAR")

Examples

parameters(exampleModels$WL_ibm)
parameters(exampleModels$WL_ibm, namesflag = TRUE)
drop orders
parameters(exampleModels$WL_ibm, namesflag = TRUE, drop = "order")
drop orders and mixing weights
parameters(exampleModels$WL_ibm, namesflag = TRUE, drop = c("order", "prob"))

parameters(exampleModels$WL_I, namesflag = TRUE)
parameters(exampleModels$WL_II, namesflag = TRUE)

percent_of Infix operator to apply functions to matrix-like objects

Description

The infix operator %of% is a generic function which applies functions to objects. This page describes
the function and the methods defined in package mixAR.

Usage

"%of%"(e1, e2)
e1 %of% e2

Arguments

e1 usually a function, the name of a function, a character vector, or a list of func-
tions, see Details.

e2 an object, usually matrix-like.

Details

%of% is a generic function with dispatch on both arguments. It is intended to be used mainly in infix
form.

%of% transforms each “column” of a matrix-like object by a function. If e1 specifies a single func-
tion, that is applied to all columns. Otherwise length(e1) should equal the number of “columns”
of e2 and e1[[i]] is applied to the i-th “column” of e2.

76 percent_of

The mental model is that the first argument, e1, is (converted to) a list of functions containing one
function for each column of e2. The i-th function is applied to each element of the i-th column.

The methods for "MixComp" objects allow for very transparent and convenient computing with
"MixAR" objects.

Value

for the default method, a matrix;

for methods with e2 from class MixComp, a MixComp object with its slot m replaced by the result of
applying e1 to its elements, see the descriptions of the individual methods for details;

Methods

Below are the descriptions of the methods for %of% defined by package mixAR.

signature(e1 = "ANY", e2 = "ANY") This is the default method. It uses apply() to evaluate e1
for each element of the matrix e2, without checking the arguments. If the arguments are
not suitable for apply(), any error messages will come from it. So, for this method e1 is a
function (or the name of a function) and e2 is a matrix or array.

signature(e1 = "function", e2 = "MixComp") Create (and return) a MixComp object with its slot
m replaced by the result of applying the function e1 to each element of the MixComp object e2,
see class "MixComp".

signature(e1 = "character", e2 = "MixComp") Here e1 contains the names of one or more func-
tions. If length(e1) = 1, this is equivalent to the method for e1 of class "function".
If length(e1) > 1, then for each i the function specified by e1[i] is applied to the ith column
of e2@m. In this case there is no recycling: e1 must have ncol(e2@m) elements.

signature(e1 = "list", e2 = "MixComp") Here each element of e1 is a function or the name of a
function. It works analogously to the method with e1 from class "character". If length(e1)
= 1, then e1[[1]] is applied to each element of e1@m. Otherwise, if length(e1) > 1, then
e1[[i]] is applied to the ith column of e2@m.

Note

The code is rather inefficient for some of the methods.

Maybe should require that the functions in the first argument are vectorised. (Some methods effec-
tively assume it.)

Author(s)

Georgi N. Boshnakov

See Also

class "MixComp"

permn_cols 77

Examples

m <- matrix(rnorm(18), ncol = 3)
defult method
pm1 <- pnorm %of% m
f3 <- list(pnorm, function(x, ...) pnorm(x, mean = 0.1),

function(x, ...) pnorm(x, mean = -0.1))
no method for f from "list" yet:
pm2 <- f3 %of% m

mc <- new("MixComp", m = m)
pnorm %of% mc
pmc3 <- f3 %of% mc
result is equivalent to applying f3[[i] to m[, i]:
all.equal(pmc3@m, cbind(f3[[1]](m[, 1]), f3[[2]](m[, 2]), f3[[3]](m[, 3])))

permn_cols All permutations of the columns of a matrix

Description

All permutations of the columns of a matrix

Usage

permn_cols(m)

Arguments

m a matrix

Details

This function is a wrapper for permn from package ‘combinat’.

Value

a list with one element for each permutation of the columns. Each element of the list is an unnamed
list with two components:

1. the permutation, a vector of positive integers,

2. a matrix obtained by permuting the columns of m.

Author(s)

Georgi N. Boshnakov

78 PortfolioData1

Examples

m <- matrix(c(11:14,21:24,31:34), ncol=3)
pm <- permn_cols(m)
pm[[2]]

PortfolioData1 Closing prices of four stocks

Description

Closing prices of four stocks.

Usage

data("PortfolioData1")

Format

A data frame with 867 observations on the following 4 variables.

DELL numeric, Dell Technologies Inc.

MSFT numeric, Microsoft Corporation.

INTC numeric, Intel Corporation.

IBM numericr, International Business Machine Corporation.

Details

Time series of daily adjusted close prices of the above stocks from 2 January 2016 to 29 January
2020 (867 observations).

Source

‘https://finance.yahoo.com/’

Examples

data(PortfolioData1)
dim(PortfolioData1)
head(PortfolioData1)

predict_coef 79

predict_coef Exact predictive parameters for multi-step MixAR prediction

Description

Exact predictive parameters for multi-step MixAR prediction.

Usage

predict_coef(model, maxh)

Arguments

model a MixAR model.

maxh maximal horizon.

Details

predict_coef() implements the method of Boshnakov (2009) for the h-step prediction of MixAR
processes. The h-step predictive distribution has a MixAR distribution with gh components and this
function computes its parameters.

predict_coef() implements the results by Boshnakov (2009) to compute the parameters of the
predictive distributions. predict_coef() is mostly a helper function, use multiStep_dist for
prediction/forecasting (the exact method for multiStep_dist uses predict_coef() to do the main
work).

predict_coef() returns a list of lists containing the quantities needed for each horizon h, see
section Value.

Alternatiely, the parameters can be obtained as MixAR models by calling the function generated by
the exact method of multiStep_dist with argument what = "MixAR".

Value

a list with components:

arcoefs a list, arcoefs[[h]] gives the ar coefficients for the h-step predictive distribu-
tion.

sigmas a list, sigmas[[h]] sigmas[[h]] is a matrix, in which the kth column contains
the theta coefficients needed to compute sigmak in the formula for sigma in
Equation (16) (see Boshnakov 2009). In the paper the index is a tuple (k1, . . . , kh)
for clarity. In the code each tuple (k1, . . . , kh) is mapped to a linear index in
1, . . . , gh (there are gh tuples for horizon h, since the mixture has gh compo-
nents).

probs a list, probs[[h]] gives the mixture weights for the h-step predictive distribu-
tion.

sStable a list, sigmas[[h]] gives the scale parameters for the h-step predictive distribu-
tion.

80 ragged

Author(s)

Georgi N. Boshnakov

References

Boshnakov GN (2009). “Analytic expressions for predictive distributions in mixture autoregressive
models.” Stat. Probab. Lett., 79(15), 1704-1709. doi:10.1016/j.spl.2009.04.009.

See Also

multiStep_dist

ragged Small utilities for ragged objects

Description

Small utilities for ragged objects. Modify the elements of raggedCoef objects, extract them as a
vector.

Usage

rag_modify(rag, v)
ragged2vec(x)

Arguments

rag the raggedCoef object to be modified.

v vector of values to replace the old ones.

x a raggedCoef object.

Details

An error will occur if the length of v is not equal to sum(rag@p).

rag_modify is, in a sense, the inverse of ragged2vec.

Value

for rag_modify, a raggedCoef object of the same order as rag but with coefficients replaced by
the new values.

for ragged2vec, a numeric vector.

https://doi.org/10.1016/j.spl.2009.04.009

raggedCoef-class 81

Examples

rag1 <- new("raggedCoef", list(1, 2:3, 4:6))
a1 <- (1:6)^2
rag1a <- rag_modify(rag1, a1)

rag2 <- new("raggedCoef", list(1, numeric(0), 4:6)) # a zero-length ccomponent
a2 <- (1:4)^2
rag2a <- rag_modify(rag2, a2)

raggedCoef-class Class "raggedCoef" — ragged list objects

Description

Some models have several several vectors of parameters, possibly of different lengths, such that in
some circumstances they are thought of as lists, in others as matrices after suitable padding with
zeroes. Class "raggedCoef" represents such ragged lists. In package "MixAR" it is used to hold the
autoregressive coefficients of MixAR models.

Usage

raggedCoef(p, value = NA_real_)

Arguments

p orders, vector of integers.

value typically, a list, but see Details.

Details

Class "raggedCoef" is for objects that can be considered as both, lists and matrices. The elements
of the list are vectors, possibly of different lengths. When the object is viewed as a matrix, each
element of the list (suitably padded with zeroes or NAs) represents a row of a matrix.

The recommended way to create objects from class "raggedCoef" is with the function raggedCoef.

If value is a "raggedCoef" object it is returned. If value is a list, it is converted to "raggedCoef"
using new(). If argument p is missing, it is inferred from the lengths of the elements of the list. If
argument p is not missing, a consistency check is made to ensure that the order of the object is as
specified by p.

Otherwise, if value is of length one, it is replicated to form a ragged list with i-th element a vector
of length p[i]. Although not checked, the intention here is that value is from some atomic class.
The default for value is NA_real_ to give a convenient way to create a ragged list.

Finally, if none of the above applies, value is effectively assumed to be a vector of length sum(p),
although other cases are admissible (but I don’t remember if this was intended). In this case, value
is reshaped into a ragged list to match p. This is convenient when, for example, the elements of a
ragged array are obtained from an optimisation routine which expects plain vector.

82 raggedCoef-class

Objects from the Class

Below we describe the "initialize" method that underlies new("raggedCoef", ...). The rec-
ommended way to create "raggedCoef" objects is with the function raggedCoef, see section De-
tails.

Objects can also be created by calls of the form new("raggedCoef", v), where v is a list whose ele-
ments are numeric vectors, or new("raggedCoef", v1, v2, ...), where v1, v2, ... are numeric
vectors. The two forms are equivalent if v = list(v1, v2, ...).

The elements of the list v may be named. Similarly, named arguments can be used in the sec-
ond form, say new("raggedCoef", name1 = v1, name2 = v2, ...). In both cases the names are
preserved in the internal representaion, but not used.

If the arguments are not as specified above the result should be considered undefined. Currently, if
there are other arguments after the list v, they are ignored with a warning. If the first argument is
not a list then all arguments must be numeric and an error is raised if this is not the case. For com-
pleteness, we mention that exactly two arguments named a, and p are also accepted by new(), eg
new("raggedCoef", p = c(1, 2), a = list(3, 4:5)), but these are assigned to the slots without
any checking. so it is most flexible (and recommended) to use raggedCoef() instead.

Slots

a: Object of class "list" containing the values.

p: Object of class "numeric" containing the lengths of the components of a.

Methods

Indexing with "[" treats a raggedCoef object as a matrix, while "[[" treats the object as list (it works
on slot a).

Note that there is a difference between x[2,] (or the equivalent x[2]) and x[[2]]—the former
gives a vector of length max(p), so potentially padded with zeroes, while the latter gives the com-
ponent with its “natural” length.

The replacement variants of "[" and "[[" do not change the structure of the object and issue errors
if the replacement value would result in that. In situations where the checks are deemed redundant,
direct assignments to the corresponding slots may be used.

[signature(x = "raggedCoef", i = "missing", j = "missing", drop = "ANY"):

[signature(x = "raggedCoef", i = "missing", j = "numeric", drop = "ANY"):

[signature(x = "raggedCoef", i = "numeric", j = "missing", drop = "ANY"):

[signature(x = "raggedCoef", i = "numeric", j = "numeric", drop = "ANY"): Indexing with
"[" treats a raggedCoef object as a matrix with one row for each component and number of
columns equal to max(p). However, x[2] is equivalent to x[2,] which is different from the
treatment of matrix objects in base R.

[[signature(x = "raggedCoef", i = "ANY", j = "missing"):

[[signature(x = "raggedCoef", i = "ANY", j = "ANY"): "[[" extracts the corresponding ele-
ment of slot a.

[[<- signature(x = "raggedCoef", i = "ANY", j = "ANY", value = "numeric"): Replace the j-
th element of i-th row with value. All arguments must be scalars.

raggedCoef-class 83

[[<- signature(x = "raggedCoef", i = "ANY", j = "missing", value = "numeric"):

[<- signature(x = "raggedCoef", i = "ANY", j = "missing", value = "numeric"): Replace the
i-th row with value. Argument i must be a scalar while the length of value must be the same
as that of x@a[[i]]. The methods for "[" and "[[" with this signature coinside.

[<- signature(x = "raggedCoef", i = "ANY", j = "missing", value = "list"): The elements
of value must have the same lengths as the elements they are replacing.

[<- signature(x = "raggedCoef", i = "ANY", j = "missing", value = "matrix"): This is es-
sentially the reverse od the corresponding non-replacement operator. value must have at least
as many columns as the longest element of x that is replaced.

[<- signature(x = "raggedCoef", i = "ANY", j = "ANY", value = "numeric"): ...

[<- signature(x = "raggedCoef", i = "missing", j = "missing", value = "list"): ...

[<- signature(x = "raggedCoef", i = "missing", j = "missing", value = "matrix"): ...

[<- signature(x = "raggedCoef", i = "missing", j = "missing", value = "numeric"): ...

initialize signature(.Object = "raggedCoef"): Creates objects of class raggedCoef. This method
is used internally by new(). Users should use new() for creation of objects from this class,
see the examples.

show signature(object = "raggedCoef"): ...

mixFilter signature(x = "numeric", coef = "raggedCoef", index = "numeric"): Apply a mix-
ture filter to a time series.

row_lengths signature(x = "raggedCoef"): Gives x@p, which is the same as lengths(x@a).

length signature(x = "raggedCoef"): Gives the total number of coefficients (sum(x@p)).

anyNA signature(x = "raggedCoef"): Are there NA’s in x@a?

dim signature(x = "raggedCoef"): The dimension of the object, when viewed as a matrix. The
presence of this method also ensures that nrow() and related functions give the expected
result.

Note

Slot p is redundant but convenient.

Author(s)

Georgi N. Boshnakov

See Also

class "MixARGaussian"

Examples

ragged1 <- list(1, 2:3, 4:6)
ragged2 <- list(a = 1, b = 2:3, c = 4:6)

raggedCoef(1:3) # only order given, fill with NA's
raggedCoef(1:3, 0) # fill with a number (zero in this case)

84 raggedCoefS-class

init with a list
raggedCoef(ragged1)
raggedCoef(value = ragged1)

error, since the shape of ragged1 is not c(2, 2, 3):
raggedCoef(c(2, 2, 3), value = ragged1)

init with a flattened list
raggedCoef(p = 1:3, value = 1:6)

specify each component separately
ragA <- new("raggedCoef", 1, 2:3, 4:6)
ragB <- new("raggedCoef", list(1, 2:3, 4:6)) # same
identical(ragA, ragB) #TRUE

extract as a matrix
ragA[]

extract the 2nd component
ragA[2] # c(2, 3, 0) ("[" pads with 0's)
ragA[[2]] # c(2, 3) ("[[" does not pad)

get the 2nd and 3rd components as a matrix
ragA[2:3,] # "[" treats object (almost) as matrix
ragA[2:3] # same (though not as for "matrix")

names are kept in the list but currently not used
ragC <- new("raggedCoef", list(a = 1, b = 2:3, c = 4:6))
ragC1 <- new("raggedCoef", a = 1, b = 2:3, c = 4:6)
identical(ragC, ragC1) # TRUE
names(ragC@a) # [1] "a" "b" "c"

length(ragA)
dim(ragA)
c(nrow(ragA), ncol(ragA))
c(NROW(ragA), NCOL(ragA))

raggedCoefS-class Class "raggedCoefS" — ragged list

Description

Ragged list used to hold coefficients of MixAR models with seasonal AR parameters.

Objects from the Class

Objects are created by calls of the form

new("raggedCoefS", a = list(v1, v2 , ...), as = list(vs1, vs2, ...), s).

If orders p and ps are specified, a consistency check is made.

raggedCoefS-class 85

Slots

a Object of class "list" containing AR values. Each element of the list must be "numeric"

p Object of class "numeric" containing the lengths of components in a. If missing, it is generated
based on lengths of elements of a.

as Object of class "list" containing seasonal AR values. Each element of the list must be "numeric"

ps Object of class "numeric" containing the lengths of elements of as. If missing, it is generated
based on lengths of elements of as.

s A single element "numeric" vector determining the seasonality in the model(monthly, quarterly,
etc..).

Methods

Indexing with "[" treats a raggedCoef object as a matrix (one row for each component), while "[["
treats the object as list (it works on slot a). Specifically, "[[1]]" picks the systematic AR parameters,
"[[2]]" picks seasonal AR parameters.

The replacement variants of "[" and "[[" do not change the structure of the object.

Replacement methods only work for subsets x[[i]], x[[i]][[j]], x[[i]][[j]][k] for suitable
i, j and k.

i must be equal to 1 for x@a and 2 for x@as.

[signature(x = "raggedCoefS", i = "missing", j = "missing"): returns the complete matrix
of coefficients, one row corresponding to one component, with ’0’s to match different orders

[signature(x = "raggedCoefS", i = "missing", j = "missing"):

[signature(x = "raggedCoefS", i = "numeric", j = "missing"):

[signature(x = "raggedCoefS", i = "numeric", j = "numeric"): Indexing with "[" treats a
raggedCoef object as a matrix with one row for each component and number of columns
equal to max(p) + max(ps) in increasing lag. However, x[2] is equivalent to x[2,] which is
different from the treatment of matrix objects in base R.

[[signature(x = "raggedCoefS"), i = "numeric": if i=1 selects the list of systematic AR pa-
rameters; if i=2 selects the list of seasonal AR parameters.

[[signature(x = "raggedCoefS"), i = "numeric", j = "numeric":

[[signature(x = "raggedCoefS"), i = "numeric", j = "numeric", k = "numeric": j and k are
used to select specific elements from the listt of interest.

Author(s)

Davide Ravagli

See Also

class "raggedCoef"

86 raggedCoefV-class

Examples

showClass("raggedCoefS")

ragA <- new("raggedCoefS", a = list(c(0.5, -0.5), 1),
as = list(0, c(0.3, -0.1)), s = 12)

ragB <- new("raggedCoefS", a = list(c(0.5, -0.5), 1), p = c(2, 1),
as = list(0, c(0.3, -0.1)), ps = c(1, 2), s = 12) # same

Elements selection examples

ragA[] ## matrix of coefficients
ragA[1]; ragA[1,] ## vector of coefficients from first component
ragA[[2]] ## list of seasonal AR parameters
ragA[[2]][[1]] ## vector of seasonal AR parameters from first component

Replacement of values in 'raggedCoefS' objects

ragB[[2]] <- list(1, c(-0.5,0.5))
ragB[[2]][[2]] <- c(20, 22)
ragB[[1]][[1]][1] <- 0

raggedCoefV-class Class "raggedCoefV" — ragged list

Description

Ragged list used to hold coefficients of MixVAR models.

Objects from the Class

Objects are created by calls of the form new("raggedCoefV", a = list(v1, v2 ,...).

Slots

a: Object of class "list" containing AR values. Each element of the list must be "array".

p: Object of class "numeric" containing the length of arrays in a (AR orders). If missing, it is
generated based on lengths of elements of a.

Methods

Indexing with "[" and "[[" works on slot a.

"[" and "[[" can be use alternatively. Specifically, "[]" and "[[]]" produce the same result, the com-
plete list of AR coefficients. Similarly, [i,], [i] and [[i]] all return the i^th element of the list,
the array for i^th component. [,j] returns an array with j^th lag autoregressive parameters for each
component.

raghat1 87

[signature(x = "raggedCoefV", i = "missing", j = "ANY", drop = "ANY"): ...

[signature(x = "raggedCoefV", i = "missing", j = "numeric", drop = "ANY"): ...

[signature(x = "raggedCoefV", i = "numeric", j = "missing", drop = "ANY"): ...

[signature(x = "raggedCoefV", i = "numeric", j = "numeric", drop = "ANY"): ...

[[signature(x = "raggedCoefV", i = "missing", j = "ANY"): ...

[[signature(x = "raggedCoefV", i = "numeric", j = "ANY"): ...

initialize signature(.Object = "raggedCoefV"): ...

show signature(object = "raggedCoefV"): ...

Author(s)

Davide Ravagli

See Also

class "MixVAR"

Examples

showClass("raggedCoefV")

AR <- list()
AR[[1]] <- array(c(0.0973, -0.0499, 0.2927, 0.4256, ## VAR(2;4)

-0.0429, 0.0229, -0.1515, -0.1795,
-0.0837, -0.1060, -0.1530, 0.1947,
-0.1690, -0.0903, 0.1959, 0.0955), dim=c(2,2,4))

AR[[2]] <- array(c(0.3243, 0.2648, 0.4956, 0.2870, ## VAR(2;3)
-0.1488, 0.0454, -0.0593, -0.3629,
0.1314, 0.0274, 0.0637, 0.0485), dim=c(2,2,3))

new("raggedCoefV", AR)
new("raggedCoefV", a=AR, p=c(4,3))

raghat1 Filter a time series with options to shift and scale

Description

Filter a time series with options to shift and scale. This function is used by mixFilter.

Usage

raghat1(filter, x, index, shift = 0, residual = FALSE, scale = 1)

88 randomArCoefficients

Arguments

filter The coefficients of the filter, numeric, see Details.

x time series, numeric.

index indices for which to compute the filtered values, numeric.

shift a constant to be added to each filtered element, a number.

residual if TRUE calculate a ‘residual’, otherwise calculate a ‘hat’ value.

scale if scale != 1 calculate scaled residuals by divividing by this value. Probably
meaningful only if residual=TRUE.

Details

This function is used by mixFilter. Applies an autoregressive filter to a time series for indices
specified by index.

Note that ‘filter’ here is equivalent to calculating one-step predictions (or residuals if residual=TRUE)
from autoregressions.

index should not specify indices smaller than length(filter)+1 or larger than length(x)+1. The
value length(x)+1 can legitimately be used to calculate a prediction (but not a residual of course)
for the first value after the end of the series.

Value

A numeric vector of length equal to length(index).

Note

This should probably use filter but for the purposes of this package filter is usually short and
the calculation is vectorised w.r.t. index, so should not be terribly slow.

randomArCoefficients Random initial values for MixAR estimation

Description

Translations of functions from my Mathematica sources. Not used currently?

Usage

randomArCoefficients(ts, wv, pk, pmax, partempl, sub_size = 10,
condthr = 10, nattempt = 10, startfrom = pmax + 1)

randomMarParametersKernel(ts, ww, pk, pmax, partempl, ...)

randomMarResiduals(ts, p, partempl)

tsDesignMatrixExtended(ts, p, ind, partempl)

randomArCoefficients 89

Arguments

ts time series.

wv, ww a vector of weights (?).

pk the AR order of the requested component.

pmax the maximal AR order in the model. Needed since it cannot be determined by
functions working on a single component.

partempl parameter template, a list containing one element for each mixture component,
see Details.

sub_size the size of the subsample to use, default is 10.

condthr threshold for the condition number.

nattempt if condthr is not reached after nattempt attempts, the function returns the re-
sults from the last subset tried.

startfrom the starting index (in ts) to use for subsampling, default is pmax + 1.

... arguments to pass on to randomArCoefficients().

p a vector of non-negative integers, the MixAR order.

ind a vector of positive integers specifying the indices of the observations to use for
the “response” variable.

Details

randomArCoefficients tries small subsamples (not necessarilly contiguous) from the observations
in search of a cluster hopefully belonging to one mixture component and estimates the correspond-
ing shift and AR parameters.

randomMarResiduals selects random parameters for each mixture component and returns the cor-
responding residuals. randomMarParametersKernel is a helper function which does the computa-
tion for one component.

tsDesignMatrixExtended forms the extended design matrix corresponding to a subsample. This
is used for least square estimation of the parameters.

Author(s)

Georgi N. Boshnakov

See Also

tomarparambyComp

90 sampZpi

row_lengths-methods Methods for function row_lengths in package mixAR

Description

Determine the lengths of the ‘rows’ of a ragged object.

Methods

Some objects in this package contain (effectively) lists of vectors. These vectors are considered
‘rows’ and this function returns their lengths (as a vector).

signature(x = "ANY") The default method. Applies length to the elements of the argument
(2020-03-28: now using lengths(x)).

signature(x = "raggedCoef") Returns the lengths of the rows of the components, a numeric
vector.

signature(x = "MixAR") Returns the AR orders of the model components, a numeric vector.

sampZpi Sampling functions for Bayesian analysis of mixture autoregressive
models

Description

Sampling functions for Bayesian analysis of mixture autoregressive models. Draws observations
from posterior distributions of the latent variables Z_ts and the parameters of mixture autoregressive
models.

Usage

sampZpi(y, pk, prob, mu, AR, sigma, nsim, d)
sampMuShift(y, pk, prec, nk, shift, z, AR, nsim)
sampSigmaTau(y, pk, prec, nk, AR, mu, z, a, c, nsim)

Arguments

y a time series (currently a numeric vector).

pk numeric vector of length g. The autoregressive order of each component.

prob numeric vector of length g. Current mixing weights.

mu numeric vector of length g. Current mean parameters.

shift numeric vector of length g. Current shift parameters.

AR list of g elements. Autoregressive coefficients for each component.

sigma numeric vector of length g. Current scale parameters

sampZpi 91

nsim dessired sample size.

d numeric vector of length g. Hyperparameters for Dirichlet prior. If missing, a
vector of 1s is generated. If length is 1, creates a vector of length g with given
number.

prec numeric vector of length g. Current precision parameters.

nk output from sampZpi. Component sum of latent variables Z_t.

z output latentZ from sampZpi. A matrix containing the simulated latent vari-
ables.

a, c hyperparameters.

Details

sampZpi draws observations from posterior distributions of the latent variables Z_ts and mixing
weights of a Mixture autoregressive model.

sampSigmaTau draws observations from posterior distributions of the precisions tau_k of a Mixture
autoregressive model, and obtains scales sigma_k by transformation.

sampMuShift Draws observations from posterior distributions of the means mu_k of a Mixture au-
toregressive model, and obtains shifts phi_k0 by transformation.

Value

for sampZpi, a list containing the following elements:

mix_weights matrix with nrow = nsim and ncol = g: sampled mixing weights.

latentZ matrix with nrow = n - p and ncol = g, n equal to length(y) and p equal to
max(pk: the simulated latent variables Z_t at the last of nsim iterations (func-
tional). Specifically, each row contains 1 for exactly one component, and is
filled with 0.

nk Vector of length g. Column sums of latentZ.

for sampMuShift, a list containing the following elements:

shift matrix with nrow = nsim and ncol = g: simulated shift parameters, obtained by
transformation of the means.

mu matrix with nrow = nsim and ncol = g: simulated mean parameters.

for sampSigmaTau, a list containing the following elements:

scale matrix with nrow = nsim and ncol = g: scale parameters, obtained by transfor-
mation of precisions.

precision matrix with nrow = nsim and ncol = g: precision parameters.

lambda numeric vector of length nsim simulated values of hyperparameter lambda, due
to hierarchical setup.

Author(s)

Davide Ravagli

92 show_diff

Examples

model <- new("MixARGaussian",
prob = exampleModels$WL_At@prob, # c(0.5, 0.5)
scale = exampleModels$WL_At@scale, # c(1, 2)
arcoef = exampleModels$WL_At@arcoef@a) # list(-0.5, 1.1)

prob <- model@prob
sigma <- model@scale
prec <- 1 / sigma ^ 2
g <- length(model@prob)
d <- rep(1, g)
pk <- model@arcoef@p
p <- max(pk)
shift <- mu <- model@shift

AR <- model@arcoef@a

model

set.seed(1234)
n <- 50 # 500
nsim <- 50

y <- mixAR_sim(model, n = n, init = 0)
x <- sampZpi(y, pk, prob, shift, AR, sigma, nsim = nsim, d)
x1 <- sampMuShift(y, pk, prec, nk = x$nk, shift, z = x$latentZ, AR, nsim = nsim)
x2 <- sampSigmaTau(y, pk, prec, nk = x$nk, AR, mu = x1$mu, z = x$latentZ,

a = 0.2, c = 2, nsim = nsim)

show_diff Show differences between two models

Description

Show differences between two MixAR models in a way that enables quick comparison between
them. This is a generic function, package mixAR defines methods for MixAR models.

Usage

show_diff(model1, model2)

Arguments

model1, model2 the MixAR models to be compared.

Details

show_diff() is a generic function with dispatch on both arguments.

show_diff() prints the differences between two models in convenient form for comparison. The
methods for MixAR models allow to see differences between similar models at a glance.

simuExperiment 93

Value

The function is called for the side effect of printing the differences between the two models and has
no useful return value.

Methods

signature(model1 = "MixAR", model2 = "MixAR")

signature(model1 = "MixARGaussian", model2 = "MixARgen")

signature(model1 = "MixARgen", model2 = "MixARGaussian")

signature(model1 = "MixARgen", model2 = "MixARgen")

Author(s)

Georgi N. Boshnakov

Examples

the examples reveal that the models below
differ only in the noise distributions
show_diff(exampleModels$WL_Ct_3, exampleModels$WL_Bt_1)
show_diff(exampleModels$WL_Bt_1, exampleModels$WL_Ct_3)
show_diff(exampleModels$WL_Ct_2, exampleModels$WL_Bt_3)

simuExperiment Perform simulation experiments

Description

Perform simulation experiments

Usage

simuExperiment(model, simu, est, N = 100, use_true = FALSE,
raw = FALSE, init_name = "init", keep = identity,
summary_fun = .fsummary, ...)

Arguments

model the model, see ’Details’.

simu arguments for the simulation function, a list, see ’Details’.

est arguments for the estimation function, a list, see ’Details’.

N number of simulations.

use_true if TRUE, use also the "true" coefficients as initial values, see ’Details’.

raw if TRUE, include the list of estimated models in the returned value.

94 simuExperiment

init_name name of the argument of the estimation function which specifies the initial values
for estimation, not always used, see ‘Details’.

keep what values to keep from each simulation run, a function, see ’Details’.

summary_fun A function to apply at the end of the experiment to obtain a summary, see ’De-
tails’.

... additional arguments to pass on to the summary function. NOTE: this may
change.

Details

Argument model specifies the underlying model and is not always needed, see the examples. Ar-
gument simu specifies how to simulate the data. Argument est specifies the estimation procedure.
Argument N specifies the number of simulation runs. The remaining arguments control details of
the simulations, mostly what is returned.

Basically, simuExperiment does N simulation-estimation runs. The keep function is applied to the
value obtained from each run. The results from keep are assembled in a list (these are the ’raw’
results). Finally, the summary function (argument summary_fun) is applied to the raw list.

simu and est are lists with two elements: fun and args. fun is a function or the name of a function.
args is a list of arguments to that function. The first argument of the estimation function, est$fun,
is the simulated data. This argument is inserted by simuExperiment and should not be put in
est$args.

The value returned by the summary function is the main part of the result. If raw = TRUE, then the
raw list is returned, as well. Further fields may be made possible through additional arguments but
’Summary’ and ’Raw’ are guaranteed to be as described here.

simuExperiment uses init_name only if use_true is TRUE to arrange a call of the estimation
function with initial value model. Obviously, simuExperiment does not know how (or if) the
estimation function does with its arguments.

The function specified by argument keep is called with one argument when use_true is FALSE
and two arguments otherwise.

Value

A list with one or more elements, depending on the arguments.

Summary a summary of the experiment, by default sample means and standard deviations
of the estimates.

Raw A list of the estimated models.

Author(s)

Georgi N. Boshnakov

Examples

explore dist. of the mean of a random sample of length 5.
(only illustration, such simple cases hardly need simuExperiment)
sim1 <- list(fun="rnorm", args = list(n=5, mean=3, sd = 2))

stdnormmoment 95

est1 <- list(fun=mean, args = list())

a basic report function
fsum1 <- function(x){ wrk <- do.call("c",x)

c(n = length(wrk), mean = mean(wrk), sd = sd(wrk))}

a1 <- simuExperiment(TRUE, simu = sim1, est = est1, N = 1000, summary_fun = fsum1)

explore also the dist. of the sample s.d.
est2 <- est1
est2$fun <- function(x) c(xbar = mean(x), s = sd(x))

a2 <- simuExperiment(TRUE, simu = sim1, est = est2, N = 1000)

keep the raw sample means and s.d.'s for further use
a2a <- simuExperiment(TRUE, simu = sim1, est = est2, N = 1000, raw = TRUE)
a2a$Summary

replicate a2a$Summary
s5 <- sapply(a2a$Raw, identity)
apply(s5, 1, mean)
apply(s5, 1, sd)

hist(s5[1,], prob=TRUE)
lines(density(s5[1,]))
curve(dnorm(x, mean(s5[1,]), sd(s5[1,])), add = TRUE, col = "red")

mixAR:::.fsummary(a2a$Raw)
mixAR:::.fsummary(a2a$Raw, merge = TRUE)

stdnormmoment Compute moments and absolute moments of standardised-t and nor-
mal distributions

Description

Compute moments and absolute moments of standardised-t, t and normal distributions.

Usage

stdnormmoment(k)
stdnormabsmoment(k)
stdtmoment(nu, k)
stdtabsmoment(nu, k)
tabsmoment(nu, k)

Arguments

k numeric vector, moments to compute.

nu a number, degrees of freedom.

96 stdnormmoment

Details

These functions compute moments of standardised-t and standard normal distibutions. These dis-
tributions have mean zero and variance 1. Standardised-t is often prefferred over Student-t for
innovation distributions, since its variance doesn’t depend on its parameter (degrees of freedom).
The absolute moments of the usual t-distributions are provided, as well.

The names of the functions start with an abbreviated name of the distribution concerned: stdnorm
(N(0,1)), stdt (standardised-t), t (Student-t).

The functions with names ending in absmoment() (stdnormabsmoment(), stdtabsmoment() and
tabsmoment()) compute absolute moments, The rest (stdnormmoment() and stdtmoment()) com-
pute ordinary moments.

The absolute moments are valid for (at least) k >= 0, not necessarily integer. The ordinary moments
are currently intended only for integer moments and return NaN’s for fractional ones, with warnings.

Note that the Student-t and standardised-t with ν degrees of freedom have finite (absolute) moments
only for k < ν. As a consequence, standardised-t is defined only for ν > 2 (otherwise the variance
is infinite).

stdtabsmoment returns Inf for any k ≥ ν. stdtmoment returns Inf for even integer k’s, such that
k ≥ ν. However, for odd integers it returns zero and for non-integer moments it returns NaN. Here
is an example, where the first two k’s are smaller than nu, while the others are not:

stdtabsmoment(nu = 5, k = c(4, 4.5, 5, 5.5))
##: [1] 9.00000 29.31405 Inf Inf
stdtmoment(nu = 5, k = c(4, 4.5, 5, 5.5))
##: [1] 9 NaN 0 NaN

These functions are designed to work with scalar nu but this is not enforced.

Value

numeric vector of the same length as k.

Author(s)

Georgi N. Boshnakov

References

Würtz D, Chalabi Y, Luksan L (2006). “Parameter Estimation of ARMA Models with GARCH /
APARCH Errors An R and SPlus Software Implementation.” http://www-stat.wharton.upenn.
edu/%7Esteele/Courses/956/RResources/GarchAndR/WurtzEtAlGarch.pdf.

Examples

some familiar positive integer moments
stdnormmoment(1:6)
fractional moments of N(0,1) currently give NaN
stdnormmoment(seq(1, 6, by = 0.5))
abs moments don't need to be integer
curve(stdnormabsmoment, from = 0, to = 6, type = "l", col = "blue")

http://www-stat.wharton.upenn.edu/%7Esteele/Courses/956/RResources/GarchAndR/WurtzEtAlGarch.pdf
http://www-stat.wharton.upenn.edu/%7Esteele/Courses/956/RResources/GarchAndR/WurtzEtAlGarch.pdf

tomarparambyComp 97

standardised-t
stdtmoment(5, 1:6)
stdtabsmoment(5, 1:6)
stdtabsmoment(5, 1:6)

Student-t
tabsmoment(5, 1:6)

tomarparambyComp Translations of my old MixAR Mathematica functions

Description

Translations of some of my MixAR Mathematica functions. Not sure if these are still used.

Usage

tomarparambyComp(params)
tomarparambyType(params)
permuteArpar(params)

Arguments

params the parameters of the MixAR model, a list, see Details.

Details

tomarparambyComp is for completeness, my Mathematica programs do not have this currently.

The arrangement of the parameters of MixAR models in package "MixAR" is “by type”: slot prob
contains the mixture probabilities (weights), shift contains intercepts, and so on.

An alternative representation is “by component”: a list whose k-th elements contains all parameters
associated with the k-th mixture component. The functions described here use the following order
for the parameter of the k-th component: prob_k, shift_k, arcoeff_k, sigma2_k.

tomarparambyType takes an argument, params, arranged “by component” and converts it to “by
type”. tomarparambyComp does the inverse operation, from “by type” to “by component”.

permuteArpar creates all permutaions of the components of a MixAR model. It takes a “by compo-
nent” argument. The autoregressive orders are not permuted, in that if the input model has AR orders
c(2, 1, 3), all permuted models are also c(2, 1, 3). The AR coefficients of shorter or longer com-
ponents are padded with zeroes or truncated, respectively, see the unexported adjustLengths().

Value

For tomarparambyComp, a list containing the parameters of the model arranged “by component”,
see Details.

For tomarparambyType, a list containing the parameters of the model arranged “by type”. It con-
tains the following elements.

98 tomarparambyComp

prob mixture probabilities, a numeric vector,

shift shifts, a numeric vector,

arcoef autoregressive coefficients,

s2 noise variances, a numeric vector.

For permuteArpar, a list with one element (arranged “by type”) for each possible permutation of
the AR parameters.

Author(s)

Georgi N. Boshnakov

See Also

randomArCoefficients

Examples

bycomp <- list(list(0.1, 10, 0.11, 1),
list(0.2, 20, c(0.11, 0.22), 2),
list(0.3, 30, c(0.11, 0.22, 0.33), 3))

bytype <- tomarparambyType(bycomp)
identical(bycomp, tomarparambyComp(bytype)) # TRUE

permuteArpar(bycomp)

Index

∗ MixAR
Choose_pk, 8
cond_loglik, 10
exampleModels, 15
fit_mixAR-methods, 17
fit_mixARreg-methods, 19
fnoise, 23
isStable, 27
lik_params, 29
mix_ek, 60
mix_hatk, 62
mix_moment, 62
mix_pdf-methods, 65
mix_qf-methods, 66
mix_se-methods, 67
MixAR-class, 33
mixAR-methods, 34
mixAR_BIC, 42
mixAR_diag, 44
mixAR_switch, 48
mixARemFixedPoint, 35
MixARGaussian-class, 37
mixFilter, 52
multiStep_dist-methods, 69
noise_dist, 72
parameters, 74
predict_coef, 79
randomArCoefficients, 88
show_diff, 92
tomarparambyComp, 97

∗ MixComp
inner, 25
mix_ncomp-methods, 65
MixComp-class, 49
percent_of, 75

∗ MixVAR
MixVAR-class, 56
mixVAR_sim, 59
MixVARGaussian-class, 58

∗ array
permn_cols, 77

∗ classes
MixAR-class, 33
MixARGaussian-class, 37
MixARgen-class, 39
MixComp-class, 49
MixVAR-class, 56
MixVARGaussian-class, 58
raggedCoef-class, 81
raggedCoefS-class, 84
raggedCoefV-class, 86

∗ datagen
mixAR_sim, 47

∗ datasets
PortfolioData1, 78

∗ distribution
dist_norm, 11
mix_pdf-methods, 65
mix_qf-methods, 66
stdnormmoment, 95

∗ em
em_est_dist, 12
em_est_sigma, 12
em_rinit, 13
mixAR_cond_probs, 44
mixARemFixedPoint, 35
mixgenMstep, 53
mixMstep, 54

∗ estimation
fit_mixAR-methods, 17
marg_loglik, 31

∗ math
inner, 25
percent_of, 75

∗ methods
fit_mixAR-methods, 17
get_edist-methods, 25
inner, 25

99

100 INDEX

lik_params, 29
make_fcond_lik-methods, 30
mix_ek, 60
mix_hatk, 62
mix_ncomp-methods, 65
mix_pdf-methods, 65
mix_qf-methods, 66
mix_se-methods, 67
mixAR-methods, 34
mixFilter, 52
multiStep_dist-methods, 69
noise_dist-methods, 73
noise_params-methods, 73
noise_rand-methods, 74
parameters, 74
percent_of, 75
row_lengths-methods, 90
show_diff, 92

∗ optimize
mixARemFixedPoint, 35

∗ package
mixAR-package, 3

∗ prediction
mix_moment, 62
mix_pdf-methods, 65
mix_qf-methods, 66
multiStep_dist-methods, 69
predict_coef, 79

∗ ragged
ragged, 80
raggedCoef-class, 81
raggedCoefS-class, 84
raggedCoefV-class, 86
raghat1, 87

∗ regression
fit_mixARreg-methods, 19

∗ residuals
fit_mixARreg-methods, 19

∗ selection
marg_loglik, 31

∗ simulation
mixARnoise_sim, 41
mixVAR_sim, 59
simuExperiment, 93

∗ ts
cond_loglik, 10
mix_pdf-methods, 65
mix_qf-methods, 66

mixAR-package, 3
mixAR_sim, 47
mixFilter, 52

*,MixComp,MixComp-method
(MixComp-class), 49

*,MixComp,numeric-method
(MixComp-class), 49

*,character,MixComp-method
(MixComp-class), 49

*,function,MixComp-method
(MixComp-class), 49

*,numeric,MixComp-method
(MixComp-class), 49

+,MixComp,numeric-method
(MixComp-class), 49

+,numeric,MixComp-method
(MixComp-class), 49

-,MixComp,missing-method
(MixComp-class), 49

-,MixComp,numeric-method
(MixComp-class), 49

-,numeric,MixComp-method
(MixComp-class), 49

/,MixComp,numeric-method
(MixComp-class), 49

/,numeric,MixComp-method
(MixComp-class), 49

[,raggedCoef,missing,missing,ANY-method
(raggedCoef-class), 81

[,raggedCoef,missing,numeric,ANY-method
(raggedCoef-class), 81

[,raggedCoef,numeric,missing,ANY-method
(raggedCoef-class), 81

[,raggedCoef,numeric,numeric,ANY-method
(raggedCoef-class), 81

[,raggedCoefS,missing,missing,ANY-method
(raggedCoefS-class), 84

[,raggedCoefS,missing,numeric,ANY-method
(raggedCoefS-class), 84

[,raggedCoefS,numeric,missing,ANY-method
(raggedCoefS-class), 84

[,raggedCoefS,numeric,numeric,ANY-method
(raggedCoefS-class), 84

[,raggedCoefV,missing,ANY,ANY-method
(raggedCoefV-class), 86

[,raggedCoefV,missing,numeric,ANY-method
(raggedCoefV-class), 86

[,raggedCoefV,numeric,ANY,ANY-method

INDEX 101

(raggedCoefV-class), 86
[,raggedCoefV,numeric,ANY-method

(raggedCoefV-class), 86
[,raggedCoefV,numeric,missing,ANY-method

(raggedCoefV-class), 86
[,raggedCoefV,numeric,numeric,ANY-method

(raggedCoefV-class), 86
[-methods (raggedCoef-class), 81
[<-,raggedCoef,ANY,ANY,numeric-method

(raggedCoef-class), 81
[<-,raggedCoef,ANY,missing,list-method

(raggedCoef-class), 81
[<-,raggedCoef,ANY,missing,matrix-method

(raggedCoef-class), 81
[<-,raggedCoef,ANY,missing,numeric-method

(raggedCoef-class), 81
[<-,raggedCoef,missing,missing,ANY-method

(raggedCoef-class), 81
[<-,raggedCoef,missing,missing,list-method

(raggedCoef-class), 81
[<-,raggedCoef,missing,missing,matrix-method

(raggedCoef-class), 81
[<-,raggedCoef,missing,missing,numeric-method

(raggedCoef-class), 81
[<-,raggedCoef,numeric,missing,ANY-method

(raggedCoef-class), 81
[<-,raggedCoef,numeric,numeric,ANY-method

(raggedCoef-class), 81
[[,raggedCoef,ANY,ANY-method

(raggedCoef-class), 81
[[,raggedCoef,ANY,missing-method

(raggedCoef-class), 81
[[,raggedCoefS,ANY,ANY-method

(raggedCoefS-class), 84
[[,raggedCoefS,ANY,missing-method

(raggedCoefS-class), 84
[[,raggedCoefV,missing,ANY-method

(raggedCoefV-class), 86
[[,raggedCoefV,numeric,ANY-method

(raggedCoefV-class), 86
[[-methods (raggedCoef-class), 81
[[<-,raggedCoef,ANY,ANY,numeric-method

(raggedCoef-class), 81
[[<-,raggedCoef,ANY,missing,numeric-method

(raggedCoef-class), 81
[[<-,raggedCoefS,ANY,ANY,numeric-method

(raggedCoefS-class), 84
[[<-,raggedCoefS,ANY,missing,list-method

(raggedCoefS-class), 84
[[<--methods (raggedCoef-class), 81
%of% (percent_of), 75
%of%,ANY,ANY-method (percent_of), 75
%of%,character,MixComp-method

(percent_of), 75
%of%,function,MixComp-method

(percent_of), 75
%of%,list,MixComp-method (percent_of),

75
%of%-methods (percent_of), 75
%of%, 50
^,MixComp,numeric-method

(MixComp-class), 49

anyNA,raggedCoef-method
(raggedCoef-class), 81

b_show (fnoise), 23
bayes_mixAR, 7, 28
BIC_comp (mixAR_BIC), 42
bx_dx, 9

Choose_pk, 8
cond_loglik, 10
cond_loglikS (cond_loglik), 10

dim,MixComp-method (MixComp-class), 49
dim,raggedCoef-method

(raggedCoef-class), 81
dist_norm, 11
distlist (fnoise), 23

ed_nparam (fnoise), 23
ed_parse (fnoise), 23
ed_skeleton (fnoise), 23
ed_src (fnoise), 23
ed_stdnorm (fnoise), 23
ed_stdt (fnoise), 23
ed_stdt0 (fnoise), 23
ed_stdt1 (fnoise), 23
em_est_dist, 12
em_est_sigma, 12
em_rinit, 13
em_tau, 14
est_templ, 14
etk2tau (em_rinit), 13
exampleModels, 15

fdist_stdnorm, 11, 73

102 INDEX

fdist_stdnorm (fnoise), 23
fdist_stdt, 73
fdist_stdt (fnoise), 23
fit_mixAR, 21, 37, 54
fit_mixAR (fit_mixAR-methods), 17
fit_mixAR,ANY,ANY,ANY-method

(fit_mixAR-methods), 17
fit_mixAR,ANY,MixAR,list-method

(fit_mixAR-methods), 17
fit_mixAR,ANY,MixAR,missing-method

(fit_mixAR-methods), 17
fit_mixAR,ANY,MixAR,MixAR-method

(fit_mixAR-methods), 17
fit_mixAR,ANY,MixAR,numeric-method

(fit_mixAR-methods), 17
fit_mixAR,ANY,MixARGaussian,MixAR-method

(fit_mixAR-methods), 17
fit_mixAR,ANY,numeric,missing-method

(fit_mixAR-methods), 17
fit_mixAR,ANY,numeric,numeric-method

(fit_mixAR-methods), 17
fit_mixAR-methods, 17
fit_mixARreg (fit_mixARreg-methods), 19
fit_mixARreg,ANY,ANY,missing,list-method

(fit_mixARreg-methods), 19
fit_mixARreg,ANY,ANY,MixAR,list-method

(fit_mixARreg-methods), 19
fit_mixARreg,ANY,data.frame,missing,list-method

(fit_mixARreg-methods), 19
fit_mixARreg,ANY,data.frame,MixAR,missing-method

(fit_mixARreg-methods), 19
fit_mixARreg,ANY,matrix,missing,list-method

(fit_mixARreg-methods), 19
fit_mixARreg,ANY,matrix,MixAR,missing-method

(fit_mixARreg-methods), 19
fit_mixARreg,ANY,numeric,missing,list-method

(fit_mixARreg-methods), 19
fit_mixARreg,ANY,numeric,MixAR,missing-method

(fit_mixARreg-methods), 19
fit_mixARreg-methods, 19
fit_mixVAR (fit_mixVAR-methods), 21
fit_mixVAR,ANY,ANY-method

(fit_mixVAR-methods), 21
fit_mixVAR,ANY,MixVAR-method

(fit_mixVAR-methods), 21
fit_mixVAR-methods, 21
fn_stdt, 73
fn_stdt (fnoise), 23

fnoise, 23
ft_stdt (fnoise), 23

get_edist (noise_dist), 72
get_edist,MixAR-method

(get_edist-methods), 25
get_edist,MixARGaussian-method

(get_edist-methods), 25
get_edist,MixARgen-method

(get_edist-methods), 25
get_edist-methods, 25

inner, 25
inner,ANY,ANY,ANY,ANY-method (inner), 25
inner,MixComp,missing,missing,missing-method

(inner), 25
inner,MixComp,numeric,ANY,ANY-method

(inner), 25
inner,MixComp,numeric,ANY,missing-method

(inner), 25
inner,MixComp,numeric,missing,missing-method

(inner), 25
inner,numeric,MixComp,missing,missing-method

(inner), 25
inner-methods (inner), 25
isStable, 27

label_switch, 28
length,raggedCoef-method

(raggedCoef-class), 81
lik_params, 29, 31
lik_params,MixAR-method (lik_params), 29
lik_params,MixARgen-method

(lik_params), 29
lik_params-methods (lik_params), 29

make_fcond_lik
(make_fcond_lik-methods), 30

make_fcond_lik,MixAR,numeric-method
(make_fcond_lik-methods), 30

make_fcond_lik-methods, 30
marg_loglik, 31
mix_cdf, 31, 63, 67
mix_cdf (mix_pdf-methods), 65
mix_cdf,MixARGaussian,missing,missing,numeric-method

(mix_pdf-methods), 65
mix_cdf,MixARGaussian,numeric,missing,numeric-method

(mix_pdf-methods), 65
mix_cdf,MixARGaussian,numeric,numeric,missing-method

(mix_pdf-methods), 65

INDEX 103

mix_cdf,MixARgen,missing,missing,numeric-method
(mix_pdf-methods), 65

mix_cdf,MixARgen,numeric,missing,numeric-method
(mix_pdf-methods), 65

mix_cdf,MixARgen,numeric,numeric,missing-method
(mix_pdf-methods), 65

mix_cdf-methods (mix_pdf-methods), 65
mix_central_moment (mix_moment), 62
mix_ek, 52, 60
mix_ek,MixAR,numeric,missing,numeric,logical-method

(mix_ek), 60
mix_ek,MixAR,numeric,missing,numeric,missing-method

(mix_ek), 60
mix_ek,MixAR,numeric,numeric,missing,logical-method

(mix_ek), 60
mix_ek,MixAR,numeric,numeric,missing,missing-method

(mix_ek), 60
mix_ek-methods (mix_ek), 60
mix_ekurtosis (mix_moment), 62
mix_hatk, 52, 61, 62
mix_hatk,MixAR,numeric,numeric,missing-method

(mix_hatk), 62
mix_hatk-methods (mix_hatk), 62
mix_kurtosis (mix_moment), 62
mix_location (mix_moment), 62
mix_moment, 62, 66, 67
mix_ncomp (mix_ncomp-methods), 65
mix_ncomp,MixAR-method

(mix_ncomp-methods), 65
mix_ncomp,MixComp-method

(mix_ncomp-methods), 65
mix_ncomp-methods, 65
mix_pdf, 31, 63, 67
mix_pdf (mix_pdf-methods), 65
mix_pdf,MixARGaussian,missing,missing,numeric-method

(mix_pdf-methods), 65
mix_pdf,MixARGaussian,numeric,missing,numeric-method

(mix_pdf-methods), 65
mix_pdf,MixARGaussian,numeric,numeric,missing-method

(mix_pdf-methods), 65
mix_pdf,MixARgen,missing,missing,numeric-method

(mix_pdf-methods), 65
mix_pdf,MixARgen,numeric,missing,numeric-method

(mix_pdf-methods), 65
mix_pdf,MixARgen,numeric,numeric,missing-method

(mix_pdf-methods), 65
mix_pdf-methods, 65
mix_qf, 63, 66

mix_qf (mix_qf-methods), 66
mix_qf,MixARGaussian,missing,missing,missing,numeric-method

(mix_qf-methods), 66
mix_qf,MixARGaussian,numeric,missing,missing,numeric-method

(mix_qf-methods), 66
mix_qf,MixARGaussian,numeric,numeric,numeric,missing-method

(mix_qf-methods), 66
mix_qf-methods, 66
mix_se (mix_se-methods), 67
mix_se,ANY,list-method

(mix_se-methods), 67
mix_se,ANY,MixAR-method

(mix_se-methods), 67
mix_se,ANY,MixARGaussian-method

(mix_se-methods), 67
mix_se-methods, 67
mix_variance (mix_moment), 62
mixAny_sim (mixAR_sim), 47
MixAR, 38–40, 58, 61, 62
mixAR, 34
mixAR (mixAR-methods), 34
mixAR,ANY-method (mixAR-methods), 34
mixAR,MixAR-method (mixAR-methods), 34
MixAR-class, 33
mixAR-methods, 34
mixAR-package, 3
mixAR_BIC, 42, 46
mixAR_cond_probs, 44
mixAR_diag, 44
mixAR_permute (mixAR_switch), 48
mixAR_sim, 42, 47, 60
mixAR_switch, 48
mixARemFixedPoint, 35
MixARGaussian, 33–35, 37, 83
MixARGaussian (MixARGaussian-class), 37
MixARGaussian-class, 37
MixARgen, 25, 34, 35, 37, 38
mixARgen (MixARgen-class), 39
MixARgen-class, 39
mixARgenemFixedPoint, 54
mixARgenemFixedPoint

(mixARemFixedPoint), 35
mixARnoise_sim, 41
mixARreg (fit_mixARreg-methods), 19
MixComp, 26, 49, 76
MixComp-class, 49
mixFilter, 52, 61
mixFilter,ANY,ANY,ANY-method

104 INDEX

(mixFilter), 52
mixFilter,numeric,raggedCoef,numeric-method

(mixFilter), 52
mixFilter-methods (mixFilter), 52
mixgenMstep, 53
mixMstep, 54
mixSARfit, 55
MixVAR, 87
MixVAR-class, 56
mixVAR_sim, 59
mixVARfit, 22, 57
MixVARGaussian, 56, 57
MixVARGaussian (MixVARGaussian-class),

58
MixVARGaussian-class, 58
moT_A (exampleModels), 15
moT_B (exampleModels), 15
moT_B2 (exampleModels), 15
moT_B3 (exampleModels), 15
moT_C1 (exampleModels), 15
moT_C2 (exampleModels), 15
moT_C3 (exampleModels), 15
moWL (exampleModels), 15
moWL_A (exampleModels), 15
moWL_B (exampleModels), 15
moWL_I (exampleModels), 15
moWL_II (exampleModels), 15
moWLar (exampleModels), 15
moWLgen (exampleModels), 15
moWLprob (exampleModels), 15
moWLsigma (exampleModels), 15
moWLt3v (exampleModels), 15
moWLtf (exampleModels), 15
multiStep_dist, 79, 80
multiStep_dist

(multiStep_dist-methods), 69
multiStep_dist,MixAR,numeric,numeric,numeric-method

(multiStep_dist-methods), 69
multiStep_dist,MixARGaussian,numeric,missing,ANY-method

(multiStep_dist-methods), 69
multiStep_dist,MixARGaussian,numeric,missing,missing-method

(multiStep_dist-methods), 69
multiStep_dist-methods, 69

noise_dist, 72, 73
noise_dist,MixAR-method

(noise_dist-methods), 73
noise_dist,MixARGaussian-method

(noise_dist-methods), 73

noise_dist,MixARgen-method
(noise_dist-methods), 73

noise_dist-methods, 73
noise_params (noise_dist), 72
noise_params,MixAR-method

(noise_params-methods), 73
noise_params,MixARgen-method

(noise_params-methods), 73
noise_params-methods, 73
noise_rand (noise_dist), 72
noise_rand,MixAR-method

(noise_rand-methods), 74
noise_rand,MixARGaussian-method

(noise_rand-methods), 74
noise_rand,MixARgen-method

(noise_rand-methods), 74
noise_rand-methods, 74

parameters, 74
parameters,ANY-method (parameters), 74
parameters,MixAR-method (parameters), 74
parameters-methods (parameters), 74
parameters<- (parameters), 74
parameters<-,ANY-method (parameters), 74
parameters<-,MixAR-method (parameters),

74
parameters<--methods (parameters), 74
percent_of, 75
permn_cols, 77
permuteArpar (tomarparambyComp), 97
PortfolioData1, 78
predict_coef, 71, 79

rag_modify (ragged), 80
ragged, 80
ragged2vec (ragged), 80
raggedCoef, 37, 85
raggedCoef (raggedCoef-class), 81
raggedCoef-class, 81
raggedCoefS (raggedCoefS-class), 84
raggedCoefS-class, 84
raggedCoefV, 58
raggedCoefV (raggedCoefV-class), 86
raggedCoefV-class, 86
raghat1, 52, 87
randomArCoefficients, 14, 88, 98
randomMarParametersKernel

(randomArCoefficients), 88

INDEX 105

randomMarResiduals
(randomArCoefficients), 88

row_lengths (row_lengths-methods), 90
row_lengths,ANY-method

(row_lengths-methods), 90
row_lengths,MixAR-method

(row_lengths-methods), 90
row_lengths,raggedCoef-method

(row_lengths-methods), 90
row_lengths-methods, 90

sampMuShift (sampZpi), 90
sampSigmaTau (sampZpi), 90
sampZpi, 90
set_noise_params (noise_dist), 72
set_parameters (parameters), 74
set_parameters,ANY-method (parameters),

74
set_parameters,MixAR-method

(parameters), 74
set_parameters-methods (parameters), 74
show_diff, 92
show_diff,MixAR,MixAR-method

(show_diff), 92
show_diff,MixARGaussian,MixARgen-method

(show_diff), 92
show_diff,MixARgen,MixARGaussian-method

(show_diff), 92
show_diff,MixARgen,MixARgen-method

(show_diff), 92
show_diff-methods (show_diff), 92
simuExperiment, 93
stdnormabsmoment (stdnormmoment), 95
stdnormmoment, 95
stdtabsmoment (stdnormmoment), 95
stdtmoment (stdnormmoment), 95

tabsmoment (stdnormmoment), 95
tau2arcoef (mixMstep), 54
tauCorrelate (mixMstep), 54
tauetk2sigmahat (em_est_sigma), 12
tomarparambyComp, 89, 97
tomarparambyType (tomarparambyComp), 97
tsDesignMatrixExtended

(randomArCoefficients), 88
tsdiag, 46
tsdiag (mixAR_diag), 44

	mixAR-package
	bayes_mixAR
	Choose_pk
	cond_loglik
	dist_norm
	em_est_dist
	em_est_sigma
	em_rinit
	est_templ
	exampleModels
	fit_mixAR-methods
	fit_mixARreg-methods
	fit_mixVAR-methods
	fnoise
	get_edist-methods
	inner
	isStable
	label_switch
	lik_params
	make_fcond_lik-methods
	marg_loglik
	MixAR-class
	mixAR-methods
	mixARemFixedPoint
	MixARGaussian-class
	MixARgen-class
	mixARnoise_sim
	mixAR_BIC
	mixAR_cond_probs
	mixAR_diag
	mixAR_sim
	mixAR_switch
	MixComp-class
	mixFilter
	mixgenMstep
	mixMstep
	mixSARfit
	MixVAR-class
	mixVARfit
	MixVARGaussian-class
	mixVAR_sim
	mix_ek
	mix_hatk
	mix_moment
	mix_ncomp-methods
	mix_pdf-methods
	mix_qf-methods
	mix_se-methods
	multiStep_dist-methods
	noise_dist
	noise_dist-methods
	noise_params-methods
	noise_rand-methods
	parameters
	percent_of
	permn_cols
	PortfolioData1
	predict_coef
	ragged
	raggedCoef-class
	raggedCoefS-class
	raggedCoefV-class
	raghat1
	randomArCoefficients
	row_lengths-methods
	sampZpi
	show_diff
	simuExperiment
	stdnormmoment
	tomarparambyComp
	Index

