Package: pcts 0.15.2.9000

Georgi N. Boshnakov

pcts: Periodically Correlated and Periodically Integrated Time Series

Classes and methods for modelling and simulation of periodically correlated (PC) and periodically integrated time series. Compute theoretical periodic autocovariances and related properties of PC autoregressive moving average models. Some original methods including Boshnakov & Iqelan (2009) <doi:10.1111/j.1467-9892.2009.00617.x>, Boshnakov (1996) <doi:10.1111/j.1467-9892.1996.tb00281.x>.

Authors:Georgi N. Boshnakov [aut, cre]

pcts_0.15.2.9000.tar.gz
pcts_0.15.2.9000.zip(r-4.5)pcts_0.15.2.9000.zip(r-4.4)pcts_0.15.2.9000.zip(r-4.3)
pcts_0.15.2.9000.tgz(r-4.4-any)pcts_0.15.2.9000.tgz(r-4.3-any)
pcts_0.15.2.9000.tar.gz(r-4.5-noble)pcts_0.15.2.9000.tar.gz(r-4.4-noble)
pcts_0.15.2.9000.tgz(r-4.4-emscripten)pcts_0.15.2.9000.tgz(r-4.3-emscripten)
pcts.pdf |pcts.html
pcts/json (API)
NEWS

# Install 'pcts' in R:
install.packages('pcts', repos = c('https://geobosh.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/geobosh/pcts/issues

Datasets:

On CRAN:

par-modelsperiodicperiodic-modelspiar-modelsseasonaltime-seriestime-series-models

4.00 score 2 stars 3 scripts 338 downloads 122 exports 23 dependencies

Last updated 12 months agofrom:5ef809a876. Checks:OK: 1 ERROR: 6. Indexed: yes.

TargetResultDate
Doc / VignettesOKOct 27 2024
R-4.5-winERROROct 27 2024
R-4.5-linuxERROROct 27 2024
R-4.4-winERROROct 27 2024
R-4.4-macERROROct 27 2024
R-4.3-winERROROct 27 2024
R-4.3-macERROROct 27 2024

Exports:[.Pctime[[.Pctimealg1alg1utilallSeasonsallSeasons<-as_dateas_datetimeas_Pctimeas.Dateas.Date.Cyclicas.Date.PeriodicTimeSeriesautocorrelationsautocovariancesavailEndavailStartbackwardPartialCoefficientsbackwardPartialVariancesBuiltinCyclecoefCyclicdatedate.Cyclicdate<-filterCoeffilterOrderfilterPolyfilterPolyCoeffit_trigPAR_optimfitPMfittedheadintercept2permeanisStationaryModelmaxLagmC.ssmeancovmatmeanvarcheckmodelCentermodelCoefmodelCyclemodelCycle<-modelInterceptmodelOrdermodelPolymodelPolyCoefna.trimnCyclesnSeasonsnTicksnum2pcparnUnitRootsnVariablesparcovmatlistpartialAutocorrelationspartialAutocovariancespartialCoefficientspartialVariancespc_sdfactorpc.acf.parModelpc.filterpc.filter.xarmapc.hat.hpc.sdfactorpcacf_pwn_varpcacfMatpcApplypcAr.sspcAR2acfpcarma_acvf_lazypcarma_acvf_systempcarma_acvf2modelpcarma_hpcarma_h_lazypcarma_param_systempcarma_preparepcarma_tovecpcarma_unvecpcArraypcCyclepclsdfpclspiarpcMatrixpcMeanpcTestPctimepctspcts_exdatapctsArraypdSafeParOrderperiodic_acf1_testPeriodicArModelPeriodicVectorpermean2interceptpermodelmfpi1ar2parplotpwn_McLeodLjungBox_testresidualsseqSeasonssigmaSqsim_parAcvfsim_parCoefsim_pcsim_pwnslMatrixtailtest_piartoSeasontoSeasonPairtsMatrixtsVectsVectorttmatToslPairsttToslunitCycleunitCycle<-unitSeasonunitSeason<-vcovVecxx.ss

Dependencies:BBcpp11FormulagbutilsgenericslaggedlatticeltsalubridateMASSMatrixmcompanionnumDerivPolynomFquadprogrbibutilsRcppRcppArmadilloRdpacksarimatimechangextszoo

Importing and manipulating periodic time series data

Rendered frompcts_data.Rmdusingknitr::rmarkdownon Oct 27 2024.

Last update: 2023-11-28
Started: 2020-04-17

Readme and manuals

Help Manual

Help pageTopics
Periodically Correlated and Periodically Integrated Time Seriespcts-package
Indexing of objects from classes in package pcts[,BasicCycle,ANY,missing,ANY-method [,BasicCycle,missing,missing,ANY-method [,PeriodicMTS,ANY,ANY,ANY-method [,PeriodicMTS,ANY,missing,ANY-method [,PeriodicMTS,AnyDateTime,ANY,ANY-method [,PeriodicMTS,AnyDateTime,missing,ANY-method [,PeriodicMTS,missing,missing,ANY-method [,PeriodicTS,AnyDateTime,missing,ANY-method [,PeriodicTS,missing,missing,ANY-method [,PeriodicVector,ANY,ANY,ANY-method [,PeriodicVector,ANY,missing,ANY-method [,PeriodicVector,missing,ANY,ANY-method [,PeriodicVector,missing,missing,ANY-method [,VirtualPeriodicAutocovarianceModel,missing,missing,ANY-method [,VirtualPeriodicAutocovarianceModel,missing,numeric,ANY-method [,VirtualPeriodicAutocovarianceModel,numeric,missing,ANY-method [,VirtualPeriodicAutocovarianceModel,numeric,numeric,ANY-method [-methods
Methods for function'`[[`' in package 'pcts'[[,PeriodicAutocovarianceModel,numeric-method [[,PeriodicMTS,ANY,ANY-method [[,PeriodicMTS,ANY-method [[,VirtualPeriodicAutocovarianceModel,numeric,ANY-method [[-methods
Index assignments for objects from classes in package pcts[<-,ANY,ANY,ANY,ANY-method [<-,BasicCycle,ANY,missing,ANY-method [<-,BasicCycle,missing,missing,ANY-method [<-,pc.armaPQ,ANY,ANY,ANY-method [<-,PeriodicAutocovarianceModel,ANY,ANY,ANY-method [<-,PeriodicVector,ANY,ANY,ANY-method [<-,PeriodicVector,missing,ANY,ANY-method [<-,slMatrix,ANY,ANY,ANY-method [<--methods
Methods for function'$' in package 'pcts'$,PeriodicMTS-method $-methods
Get names of seasonsallSeasons allSeasons,BasicCycle,ANY-method allSeasons,Cyclic,ANY-method allSeasons,DayWeekCycle,logical-method allSeasons,DayWeekCycle,missing-method allSeasons,Every30MinutesCycle,logical-method allSeasons,Every30MinutesCycle,missing-method allSeasons,MonthYearCycle,logical-method allSeasons,MonthYearCycle,missing-method allSeasons,OpenCloseCycle,logical-method allSeasons,OpenCloseCycle,missing-method allSeasons,QuarterYearCycle,logical-method allSeasons,QuarterYearCycle,missing-method allSeasons,SimpleCycle,ANY-method allSeasons,VirtualPeriodicModel,ANY-method allSeasons-methods allSeasons<- allSeasons<-,Cyclic-method allSeasons<-,SimpleCycle-method seqSeasons unitCycle unitCycle<- unitSeason unitSeason<-
Replace methods for as_date in package pctsas_date,ANY-method as_date,character-method as_date,Cyclic-method as_date,numeric-method as_date,PeriodicTimeSeries-method as_date,POSIXt-method as_date-methods
Methods for as_datetime in package pctsas_datetime,PeriodicTimeSeries-method as_datetime-methods
Compute autocorrelations and periodic autocorrelationsautocorrelations autocorrelations,numeric,ANY,missing-method autocorrelations,PeriodicAutocovariances,ANY,missing-method autocorrelations,PeriodicTimeSeries,ANY,missing-method autocorrelations,SamplePeriodicAutocovariances,ANY,missing-method autocorrelations,VirtualPeriodicAutocovarianceModel,ANY,missing-method autocorrelations,VirtualPeriodicAutocovariances,ANY,missing-method autocorrelations-methods
Compute autocovariances and periodic autocovariancesautocovariances autocovariances,matrix,ANY-method autocovariances,matrix-method autocovariances,numeric,ANY-method autocovariances,numeric-method autocovariances,PeriodicArmaModel,ANY-method autocovariances,PeriodicArmaModel-method autocovariances,PeriodicArModel,ANY-method autocovariances,PeriodicArModel-method autocovariances,PeriodicTS,ANY-method autocovariances,VirtualPeriodicAutocovariances,ANY-method autocovariances-methods
Time of first or last non-NA valueavailEnd availStart
Compute periodic backward partial coefficientsbackwardPartialCoefficients,VirtualPeriodicAutocovariances-method backwardPartialCoefficients-methods
Compute periodic backward partial variancesbackwardPartialVariances,VirtualPeriodicAutocovariances-method backwardPartialVariances-methods
Class BareCycleBareCycle-class
Class BasicCycleBasicCycle-class
Class '"BuiltinCycle"' and its subclasses in package 'pcts'allSeasons,BuiltinCycle-method BuiltinCycle-class DayWeekCycle-class Every30MinutesCycle-class initialize,BuiltinCycle-method MonthYearCycle-class OpenCloseCycle-class QuarterYearCycle-class unitCycle,BuiltinCycle-method unitSeason,BuiltinCycle-method
Create objects from class Cyclicas.Date.Cyclic as.Date.PeriodicTimeSeries Cyclic date.Cyclic date<-
Class '"Cyclic"'Cyclic-class
Example data from Franses (1996)dataFranses1996
Replace methods for date in package pctsdate<-,BasicCycle-method date<-,Cyclic-method date<--methods
An example PAR autocorrelation functionex1f
Get the coefficients of a periodic filterfilterCoef,PeriodicBJFilter,character-method filterCoef,PeriodicSPFilter,character-method filterCoef-methods
Fit a subset trigonometric PAR modelfit_trigPAR_optim
Fit periodic time series modelsfitPM fitPM,ANY,ANY-method fitPM,mcSpec,ANY-method fitPM,numeric,ANY-method fitPM,PeriodicArModel,ANY-method fitPM,PeriodicArModel,PeriodicMTS-method fitPM,PeriodicArModel,PeriodicTS-method fitPM,PiPeriodicArModel,ANY-method fitPM,SiPeriodicArModel,ANY-method fitPM-methods
Class FittedPeriodicArmaModelas_pcarma_list,FittedPeriodicArmaModel-method FittedPeriodicArmaModel-class show,FittedPeriodicArmaModel-method
Class FittedPeriodicArModelFittedPeriodicArModel-class
Data for four stocks since 2016-01-01four_stocks_since2016_01_01
Fraser River at Hope, mean monthly flowFraser2017
Methods for function maxLag() in package 'pcts'maxLag,PeriodicArmaFilter-method maxLag-methods
Create environment for mc-fittingmC.ss xx.ss
Asymptotic covariance matrix of periodic meanmeancovmat meanvarcheck
Get the cycle of a periodic objectmodelCycle modelCycle,ANY-method modelCycle,ModelCycleSpec-method modelCycle-methods modelCycle<- modelCycle<-,ANY-method modelCycle<-,ModelCycleSpec-method modelCycle<--methods
Class ModelCycleSpecModelCycleSpec-class
Basic information about periodic ts objectsnCycles nSeasons nTicks nVariables
Number of seasons of a periodic objectnSeasons,BareCycle-method nSeasons,Cyclic-method nSeasons,DayWeekCycle-method nSeasons,Every30MinutesCycle-method nSeasons,MonthYearCycle-method nSeasons,OpenCloseCycle-method nSeasons,PartialCycle-method nSeasons,PeriodicFilterModel-method nSeasons,PeriodicIntegratedArmaSpec-method nSeasons,PeriodicInterceptSpec-method nSeasons,PeriodicMonicFilterSpec-method nSeasons,QuarterYearCycle-method nSeasons,SarimaFilter-method nSeasons,VirtualArmaFilter-method nSeasons,VirtualPeriodicArmaFilter-method nSeasons,VirtualPeriodicModel-method nSeasons-methods
Fit PAR model using sample autocorrelationsnum2pcpar
Compute asymptotic covariance matrix for PAR modelparcovmatlist
Compute periodic partial autocorrelationspartialAutocorrelations partialAutocorrelations,PeriodicAutocovariances,ANY,missing-method partialAutocorrelations,VirtualPeriodicAutocovariances,ANY,ANY-method partialAutocorrelations-methods
Compute periodic partial autocovariancespartialAutocovariances,VirtualPeriodicAutocovariances-method partialAutocovariances-methods
Compute periodic partial coefficientspartialCoefficients partialCoefficients,PeriodicArModel-method partialCoefficients,VirtualPeriodicAutocovariances-method partialCoefficients-methods
Class PartialCycleallSeasons,PartialCycle,logical-method allSeasons,PartialCycle,missing-method PartialCycle-class
Class PartialPeriodicAutocorrelationsPartialPeriodicAutocorrelations-class
Compute periodic partial variancespartialVariances partialVariances,VirtualPeriodicAutocovariances-method partialVariances-methods
Compute normalising factorspc.sdfactor pc_sdfactor
Applies a periodic ARMA filter to a time seriespc.armafilter pc.filter
Filter time series with periodic arma filterspc.filter.xarma
function to compute estimates of the h weightspc.hat.h
Variances of sample periodic autocorrelationspcacf_pwn_var
Compute PAR autocovariance matrixpc.acf.parModel pcacfMat
Periodic Levinson-Durbin algorithmalg1
Give partial periodic autocorrelations or other partial prediction quantities for a pcAcvf object.alg1util
Apply a function to each seasonpcApply pcApply,matrix-method pcApply,numeric-method pcApply,PeriodicMTS-method pcApply,PeriodicTS-method pcApply-methods
Compute the sum of squares for a given PAR modelpcAr.ss
Compute periodic autocorrelations from PAR coefficientspcAR2acf
Fit a PC-ARMA model to a periodic autocovariance functionpcarma_acvf2model
Functions to compute various characteristics of a PCARMA modelpcarma_acvf_lazy pcarma_acvf_system pcarma_h pcarma_h_lazy pcarma_param_system
Functions for work with a simple list specification of pcarma modelspcarma_prepare pcarma_tovec pcarma_unvec
Create or extract Cycle objectsBuiltinCycle pcCycle pcCycle,BasicCycle,character-method pcCycle,BasicCycle,missing-method pcCycle,character,ANY-method pcCycle,character,character-method pcCycle,character,missing-method pcCycle,Cyclic,ANY-method pcCycle,numeric,character-method pcCycle,numeric,missing-method pcCycle,PeriodicTimeSeries,character-method pcCycle,PeriodicTimeSeries,missing-method pcCycle,ts,character-method pcCycle,ts,missing-method pcCycle-methods
Fit PAR models using least squarespclsdf
Fit a periodically integrated autoregressive modelpclspiar
Compute periodic meanpcMean pcMean,matrix-method pcMean,numeric-method pcMean,PeriodicMTS-method pcMean,PeriodicTS-method pcMean,VirtualPeriodicArmaModel-method pcMean-methods
Plot periodic time seriesboxplot.PeriodicTimeSeries monthplot.PeriodicTimeSeries pcPlot
Test for periodicitypcTest pcTest,ANY,ANY-method pcTest,ANY,character-method pcTest,numeric,character-method pcTest,PeriodicTimeSeries,character-method pcTest,slMatrix,character-method pcTest-methods
Convert between Pctime and datetime objectsas_Pctime as_Pctime.Cyclic as_Pctime.PeriodicTimeSeries Pctime [.Date [.Pctime [.ts [<-.POSIXlt [[.Date [[.Pctime
Create objects from periodic time series classespcts pcts,ANY-method pcts,data.frame,ANY-method pcts,matrix,BasicCycle-method pcts,matrix,missing-method pcts,matrix,numeric-method pcts,mts,missing-method pcts,mts,numeric-method pcts,numeric,BasicCycle-method pcts,numeric,missing-method pcts,numeric,numeric-method pcts,ts,missing-method pcts,ts,numeric-method pcts,xtsORzoo,missing-method pcts-methods
Periodic time series objects for examplespcts_exdata
Deprecated Functions and classes in Package 'pcts'allSeasons,FiveDayWeekCycle,logical-method allSeasons,FiveDayWeekCycle,missing-method FiveDayWeekCycle-class mCpar nSeasons,FiveDayWeekCycle-method pcts-deprecated ptildeorders sim_arAcf unitCycle,FiveDayWeekCycle-method unitSeason,FiveDayWeekCycle-method
Functions for some basic operations with seasonspdSafeParOrder
McLeod's test for periodic autocorrelationperiodic_acf1_test
Class '"PeriodicArmaFilter"'PeriodicArFilter-class PeriodicArmaFilter-class PeriodicMaFilter-class
Class PeriodicArmaModelPeriodicArmaModel-class
Class PeriodicArmaSpecinnovationVariances,PeriodicArmaSpec-method PeriodicArmaSpec-class
Class PeriodicArModelPeriodicArModel-class
Create objects from class PeriodicArModelPeriodicArModel PeriodicArModel,matrix-method PeriodicArModel,numeric-method PeriodicArModel,PeriodicArmaModel-method PeriodicArModel,PeriodicMonicFilterSpec-method PeriodicArModel,VirtualPeriodicArmaModel-method PeriodicArModel-methods
Class PeriodicAutocorrelationsPeriodicAutocorrelations-class plot,PeriodicAutocorrelations,missing-method
Class PeriodicAutocovariancesPeriodicAutocovariances-class
Class PeriodicBJFilterPeriodicBJFilter-class PeriodicMonicFilterSpec-class
Class PeriodicFilterModelPeriodicFilterModel-class
Class PeriodicIntegratedArmaSpecPeriodicIntegratedArmaSpec-class
Class PeriodicInterceptSpecPeriodicInterceptSpec-class
Class PeriodicMaModelPeriodicMaModel-class
Class '"PeriodicMTS_ts"'PeriodicMTS_ts-class
Class '"PeriodicMTS_zooreg"'PeriodicMTS_zooreg-class
Class '"PeriodicMTS"'PeriodicMTS-class plot,PeriodicMTS,missing-method
Class PeriodicSPFilterPeriodicSPFilter-class
Class PeriodicTimeSeriesPeriodicTimeSeries-class
Class '"PeriodicTS_ts"'PeriodicTS_ts-class
Class '"PeriodicTS_zooreg"'PeriodicTS_zooreg-class
Class '"PeriodicTS"'coerce,mts,PeriodicTS-method coerce,PeriodicTS,ts-method coerce,ts,PeriodicTS-method PeriodicTS-class plot,PeriodicTS,missing-method show,PeriodicTS-method summary,PeriodicTS-method
Class PeriodicVectorPeriodicVector PeriodicVector-class
Convert between periodic centering and interceptsintercept2permean permean2intercept
Compute the multi-companion form of a per modelpermodelmf
Convert PIAR coefficients to PAR coefficientspi1ar2par piar2par
Class PiPeriodicArmaModelPiPeriodicArmaModel-class
Class PiPeriodicArModelPiPeriodicArModel-class
Class PiPeriodicMaModelPiPeriodicMaModel-class
McLeod-Ljung-Box test for periodic white noisepwn_McLeodLjungBox_test
Class SamplePeriodicAutocorrelationsSamplePeriodicAutocorrelations-class
Class SamplePeriodicAutocovariancesSamplePeriodicAutocovariances-class
Methods for seqSeasons() in package pctsseqSeasons,BasicCycle-method seqSeasons,Cyclic-method seqSeasons,VirtualPeriodicModel-method seqSeasons-methods
Methods for 'sigmaSq' in package pctssigmaSq,PeriodicIntegratedArmaSpec-method sigmaSq,PeriodicInterceptSpec-method sigmaSq-methods
Create a random periodic autocovariance functionsim_parAcvf
Generate a periodic autoregression modelsim_parCoef
Simulate periodically correlated ARMA seriessim_pc
Simulate periodic white noisesim_pwn
Class SimpleCycleSimpleCycle-class
Class SiPeriodicArmaModelSiPeriodicArmaModel-class
Class SiPeriodicArModelSiPeriodicArModel-class
Class SiPeriodicMaModelSiPeriodicMaModel-class
Functions for some basic operations with seasonstoSeason toSeasonPair ttmatToslPairs ttTosl
Class SubsetPMcoef,SubsetPM-method fitted,SubsetPM-method residuals,SubsetPM-method show,SubsetPM-method SubsetPM-class vcov,SubsetPM-method
Test for periodic integrationtest_piar
Methods for 'unitCycle' and 'unitSeason' in package pctsunitCycle,ANY-method unitCycle,Cyclic-method unitCycle,DayWeekCycle-method unitCycle,Every30MinutesCycle-method unitCycle,MonthYearCycle-method unitCycle,OpenCloseCycle-method unitCycle,PartialCycle-method unitCycle,QuarterYearCycle-method unitCycle,SimpleCycle-method unitCycle,VirtualPeriodicModel-method unitCycle-methods unitSeason,ANY-method unitSeason,Cyclic-method unitSeason,DayWeekCycle-method unitSeason,Every30MinutesCycle-method unitSeason,MonthYearCycle-method unitSeason,OpenCloseCycle-method unitSeason,PartialCycle-method unitSeason,QuarterYearCycle-method unitSeason,SimpleCycle-method unitSeason,VirtualPeriodicModel-method unitSeason-methods
Methods for '`unitCycle<-`' and '`unitSeason<-`' in package pctsunitCycle<-,Cyclic-method unitCycle<-,SimpleCycle-method unitCycle<--methods unitSeason<-,Cyclic-method unitSeason<-,SimpleCycle-method unitSeason<--methods
Core data of periodic time seriespcArray pcMatrix pctsArray tsMatrix tsVec tsVector Vec
Periodic methods for base R functionscycle.PeriodicTimeSeries deltat.PeriodicTimeSeries end.Cyclic frequency.PeriodicTimeSeries na.trim na.trim.PeriodicMTS na.trim.PeriodicTS start.Cyclic time.PeriodicTimeSeries window window.PeriodicMTS window.PeriodicTS
Class zoo made S4zoo-class
Virtual S4 class zooregzooreg-class